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 The 1990’s witnessed an explosion of small RNAs found localized to the eukaryotic 

nucleolus. Included in these small non-coding RNAs were the box C/D small nucleolar RNAs 

(snoRNAs) which base pair with ribosomal RNA to direct site-specific, nucleotide 2’-O-

methylation.  Continuing investigations rapidly expanded the box C/D snoRNA population, 

identified new functions, defined the limited set of core proteins which bind the box C/D RNAs 

to assemble ribonucleoprotein (RNP) complexes, and even discovered box C/D RNAs and core 

proteins in Archaea.  In vitro ribonucleoprotein assembly systems along with emerging crystal 

structures are now providing insight into the molecular details of both box C/D RNP structure 

and methylation function.  This chapter reviews recent advances in box C/D RNA and RNP 

biology, concluding with a discussion of future directions and the experimental challenges that 

face investigators in this exciting and rapidly advancing field of RNA-guided nucleotide 

modification. 
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I. Introduction 

 Small RNAs were first identified in eukaryotic nuclei in the 1960's when a handful of 

abundant species were phenol-extracted from isolated nuclei and characterized on sucrose 

gradients and polyacrylamide gels (reviewed in (1)).  Subsequent nucleotide analysis revealed a 

base composition distinct from GC-rich ribosomal RNA leading to their designation as U-rich 

small nuclear RNAs or the U snRNAs (2,3).  It quickly became apparent that the U snRNAs are 

partitioned in the nucleoplasmic and nucleolar compartments (4-8) and sequencing in the 1970s 

defined U3 as the first nucleolar box C/D RNA (9-12).  The box C/D snoRNA population 

remained small until the early 1990's with the discovery of numerous intronic snoRNAs encoded 

within pre-messenger RNA introns (reviewed in (13)).  Discovery of box C/D RNAs in archaeal 

organisms at the end of the decade indicated an evolutionarily ancient origin (14-16).   The 

populations of eukaryotic and archaeal box C/D RNAs has continued to grow and now numbers 

in the hundreds. 

 

 Nucleolar localization of the box C/D snoRNAs implied a role in ribosome biogenesis 

and experiments in Saccharomyces cerevisiae as well as Xenopus laevis demonstrated the 

essentiality of the major U3 box C/D snoRNA for ribosomal RNA processing (7,17-19).  Several 

additional snoRNAs were identified as crucial for pre-rRNA processing, although most tested 

snoRNA species revealed no growth phenotype when deleted in yeast (20-22).  Critical to 

understanding the primary function of box C/D snoRNAs in nucleotide modification was the 

observation that they possessed regions of complementarity with rRNA and that these 

complementary regions corresponded to sites of nucleotide 2’-O-methylation (23).  The list of 

target RNA modified by the box C/D RNAs has now expanded to include the eukaryotic splicing 

snRNAs, some pre-messenger RNAs, and archaeal tRNAs (15,24-26).    

 

 In the last decade, investigations have focused upon identifying box C/D RNA-binding 

proteins.  Highly homologous eukaryotic and archaeal core proteins have been defined and the 
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identification of eukaryotic accessory proteins suggests that snoRNP assembly may be a complex 

and regulated process (27-33).  In vitro assembly systems for the archaeal box C/D sRNP 

complex have been established and used to define box C/D RNP assembly pathways as well as 

reveal RNP structure and examine the mechanisms of box C/D RNA-guided nucleotide 

methylation function (34-36).  These studies, coupled with emerging crystal structures of the 

core proteins and RNA:protein complexes, are now leading to a more detailed understanding of 

this RNA:protein enzyme and its function as an RNA-guided nucleotide modification complex.    

 

 
 

II. Diversity of Box C/D RNA Populations 

a. Box C/D RNA Nomenclature 

Box C/D RNAs are abundant in both Eukarya and Archaea, numbering in the hundreds.  

Following the original nomenclature, most animal and plant homologs are designated U(n) with 

the species number reflecting the approximate order of discovery.  Homologs identified in other 

organisms usually adopt the same designation.  However, there are organisms which use a non-

conventional nomenclature.  Yeast snoRNAs are designated by a number preceded by the prefix 

snR(n) (37).  In Archaea, the snoRNA-like small RNAs or sRNAs are numbered and preceded 

by sR(n) (14).  Other examples of non-standard nomenclature include the protozoa Trypanosoma 

brucei (TBxCsyCz, x = chromosome number, y = cluster number, z = RNA number) and 

Euglena gracilis (Eg-mx, x = RNA number) (38,39).  Different naming schemes have also been 

employed for tissue-specific or disease related box C/D snoRNAs , such as the mouse brain-

specific box C/D snoRNA II-52 (MBII-52) or the box C/D snoRNA linked to neonatal lethality 

in Prader-Willi syndrome (Pwcr1/MBII-85) (40,41).      
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b. Box C/D RNA Structure 

Box C/D RNAs are defined by their highly conserved nucleotide box C (RUGAUGA) 

and box D (CUGA) sequences positioned near the 5’ and 3’ termini, respectively (Figure 1), and 

frequently possess internal C’ and D’ boxes (42-44).  The C’ and D’ nucleotide boxes are 

typically present and well conserved in the archaeal sRNAs but often degenerate and difficult to 

identify, or even missing, in the eukaryotic snoRNAs (14-16,45).  Individual box C/D RNAs are 

defined by their unique guide sequences which are located immediately adjacent and upstream of 

boxes D and D’.  These guide sequences base pair to the different target RNAs and determine the 

site of box C/D RNA action on the target RNA (44,46-48).  Archaeal box C/D sRNAs are 

typically smaller (50-70 nucleotides) than the eukaryotic box C/D snoRNAs (75 to 150 

nucleotides) (15,16,37,49-51).  The highly conserved archaeal guide regions of 12 nucleotides 

most often constitute the entire spacer regions between the box C/D and C’/D’ motifs and 

account for the smaller size of the archaeal sRNAs (52).  The well defined box C/D and C’/D’ 

motifs fold to establish kink turn or “K-turn” and “K-loop” elements, respectively.  The K-turn 

consists of canonical stem I and internal stem II separated by an asymmetric bulge which 

possesses tandem sheared G-A pairs essential for K-turn stability (30,53,54).  The internal K-

loop lacks stem I and is typically replaced with a small loop.  Ultimately, both the K-turn and K-

loop serve as core protein binding sites to assemble the box C/D and C’/D’ RNP complexes (34-

36).  The recent discovery of circularized box C/D sRNAs in Pyrococcus furiosus suggests a 

novel processing pathway that may augment box C/D sRNA stability in hyperthermophiles (55). 

 

c. Diversity of Box C/D RNA Populations 

Appreciation of box C/D RNA diversity in eukaryotic and archaeal organisms has come 
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with the characterization of RNA populations in a variety of organisms in both kingdoms.  In 

eukaryotes, approximately two thirds of the yeast snoRNAs involved in rRNA maturation are 

conserved and found in plants and humans (56).  The yeast box C/D snoRNA population has 

been well defined and currently numbers 46 RNAs (57).  This compares with more than double 

that number of human box C/D RNAs involved in rRNA maturation, but does not include 

additional RNAs modifying other cellular target RNAs (58).  Thus, the box C/D snoRNA 

populations of metazoan organisms are characteristically more complex with many of these 

additional RNAs unique to specific organisms.  Box C/D homologs in different organisms may 

possess unique guide sequences reflecting organism-specific rRNA sequences yet modify 

corresponding nucleotides in the respective ribosomal RNAs.  However, many box C/D 

snoRNAs modify rRNA nucleotides or nucleotides of other target RNAs that are unique to that 

organism (38).  Thus, different eukaryotes typically possess a unique set of snoRNAs 

characteristic of that organism.  While the majority of box C/D snoRNAs are involved in 

nucleotide methylation of rRNA nucleotides, conserved box C/D snoRNAs such as U3, U8, and 

U14 function in animals, plants, and fungi in non-modification roles such as facilitating pre-

rRNA folding or cleavage during precursor processing (13).  To date, there appears to be no 

shared box C/D RNA homologs between Archaea and Eukarya.  Similarly, box C/D sRNA 

populations among Crenarchaeota and Euryarchaeota are typically distinct with respect to the 

specific organism examined (15,16,59).   

 

d. Box C/D RNA Identification 

Hundreds of box C/D RNAs have been defined in numerous eukaryotic and archaeal 

organisms.  Techniques to identify and define box C/D RNAs include both biochemical and 
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computational approaches.  Biochemical approaches include isolation of small RNAs 

fractionated on gradients or immunoprecipitated with antibodies against box C/D RNP proteins, 

followed by cDNA cloning and sequencing (60-62).  Immunoprecipitation of box C/D RNPs 

recently identified 66 previously unknown box C/D snoRNAs in the protist Euglena gracilis 

(39).  Computational approaches have utilized a variety of search engines and algorithms to 

analyze available databases using box C and D consensus sequences (Table 1), as well as 

appropriately positioned guide sequences that exhibit complementarity to cellular target RNAs 

(63,64).  Other sequence analysis-based searches have used snoRNA or intronic sequence 

databases to search for homologs in particular organisms (50,65).  Computational approaches can 

identify potential box C/D RNAs that are expressed at low levels or in a tissue-specific manner 

whose detection by biochemical approaches could prove difficult.  The utility of computational 

approaches was recently demonstrated by the identification of 62 novel box C/D RNAs from the 

trypanosome Leishmania major and 50 novel snoRNAs in Caenorhabditis elegans (66,67).  Both 

candidate and experimentally confirmed RNAs are found in an array of databases which report 

ever increasing populations of archaeal and eukaryotic box C/D RNAs (Table 1).  Both 

biochemical approaches have identified “orphan” box C/D RNAs where the associated guide 

sequence is not complementary to any know cellular RNA sequence thus raising the question as 

to not only their potential target RNAs but also their possible function(s).   

 

 

III. Box C/D RNA Functions and Target RNAs 

a. Folding and Cleavage of Pre-rRNA 

The base pairing of box C/D RNA guide sequences to their respective target RNAs 
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determines the site of RNA function.  The first identified eukaryotic snoRNAs were localized in 

the nucleolus, thus implying a role in pre-rRNA processing and/or ribosome biogenesis 

(7,18,68,69).  Early experiments indeed demonstrated the importance of U3 (snR17), U8, U14, 

snR10,  and snR30 box C/D snoRNAs for pre-rRNA cleavage (20,22,70-73).  Those snoRNAs 

required for rRNA processing are typically essential RNAs, whereas those snoRNAs guiding 

nucleotide modification are not.  The box C/D snoRNAs required for pre-rRNA cleavage at 

specific sites in yeast is based upon snoRNA gene disruption experiments.  Similar observations 

have been made for Xenopus laevis rRNA processing when these same essential snoRNA species 

are depleted in oligonucleotide knockout experiments (13,17,74,75). 

 

Some box C/D snoRNAs such as U3, U8, and U14 have been shown to be important for pre-

rRNA folding and cleavage.  These snoRNAs are considered to have “chaperone” function as 

their base pairing to target rRNAs facilitates correct pre-RNA folding required for precursor 

maturation.  U3 hydrogen-bonds with the 5’ ETS of the rRNA precursor and U14 base pairs with 

18S rRNA (76-78).  Both snoRNAs are essential for pre-RNA cleavage and production of 

mature 18S rRNA.  U8 is required for proper folding of 5.8S and 28S rRNAs within the 

precursor transcript and is essential for 28S rRNA production (74,79,80).  Interestingly, U14 not 

only guides 18S rRNA processing using its C’/D’ guide sequence, but also guides nucleotide 

methylation using its box C/D guide sequence (75).  Recent work utilizing computer simulations 

has suggested that snoRNAs may play important roles in long range rRNA folding (81).  To date, 

eukaryotic box C/D RNAs have not been implicated in chaperone folding or precursor 

processing functions for any RNA other that pre-ribosomal RNA.   
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b. 2’-O-Methylation of Diverse RNA Targets 

The primary role of most box C/D RNAs is to guide the modification of a targeted 

nucleotide’s ribose sugar, catalyzing addition of a methyl group at the 2’ hydroxyl position 

(Figure 1).  The nucleotide targeted for methylation is positioned within the RNA duplex formed 

by the hydrogen bonded target:guide RNA sequences and base paired to the fifth nucleotide 

upstream from the snoRNA’s D or D’ box (44,46,47).  The number of nucleotides modified by 

the box C/D RNAs in eukaryotes and archaea numbers in the hundreds and thus explains the 

large box C/D populations found in eukaryotic and archaeal organisms.  Approximately 100 

ribose methylations are found in human rRNA, about 120 in plant Arabidopsis thaliana rRNA, 

and 55 in yeast rRNA (82-84).  The occurrence of methylated nucleotides in archaeal rRNA is 

also considerable with 67 identified in Sulfolobus solfataricus and at least 26 and 93 predicted in 

Sulfolobus acidocaldarius and Pyrococcus abyssi, respectively (15,16,85).  The specific rRNA 

nucleotides methylated vary from organism to organism, but these modifications tend to be 

clustered in conserved core and functional regions of the rRNA (84).  Disruption of one or a few 

modifications at specific nucleotides often does not result in an obvious phenotype (84), although 

complete disruption of nucleotide methylation in yeast has severe effects upon rRNA maturation 

and ribosome function (86).   

 

 The types of RNA targeted for methylation by box C/D RNAs extends beyond the 

ribosomal RNAs to include archaeal tRNAs and the eukaryotic splicing snRNAs.  Many of the 

modifications in archaeal rRNA and tRNAs are predicted by newly defined box C/D sRNAs and 

their associated D and D’ guide sequences (15).  Also found in Archaea and Eukarya are 

“orphan” RNAs where the guide sequence(s) of an identified C/D RNA is not complementary to 
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any sequence in a known cellular RNA (48,64).  In eukaryotes, specific box C/D RNAs guide 

nucleotide methylation of U1, U2, U4, U5, U6 and U12 snRNAs (24,87,88) (see Chapter 9 by 

Karijolich et al.).   Specific members of the box C/D RNA family are also found localized to the 

nuclear Cajal bodies and designated small Cajal RNAs or scaRNAs.  These scaRNAs are unique 

in that they possess both box C/D and box H/ACA RNA motifs and direct the 2’-O-methylation 

and pseudouridylation of the RNA Pol II-transcribed snRNAs U1, U2, U4, and U5 within the 

Cajal bodies (24).   

 

c. Additional Roles and Targets for Box C/D RNAs 

Investigation of specific tissues has suggested a larger population of box C/D RNAs than 

originally anticipated.  Analysis of small RNAs in mouse, rat and human brain has identified 

many brain-specific box C/D snoRNAs (40,89,90).  Only the mouse/human brain-specific box 

C/D snoRNA MBII-52/HBII-52 has been mapped to a putative target.  This box C/D snoRNA 

appears to target an A-to-I editing site in the serotonin receptor 2C (5-HT2C) pre-mRNA.  

Methylation of this site potentially modulates pre-mRNA editing and alternative splicing, 

thereby resulting in changes to serotonin signaling capacity (25).  Alternatively, it has been 

suggested that the HBII-52 snoRNA uses its guide region sequences to affect alternative splicing 

of the 5-HT2C pre-mRNA by masking splicing silencers which then leads to the inclusion of an 

exon in the final spliced serotonin receptor mRNA (26).  The loss of MBII-85/HBII-85 is 

implicated in Prader-Willi syndrome (91).  Furthermore, regulation of MBII-52 and MBII-48 

snoRNA levels has been noted in the early phase of memory consolidation during learning, thus 

suggesting a possible role for this snoRNA in higher brain function (92).    
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IV. Box C/D RNP Structure and Nucleotide Methylation Function 

a. Eukaryotic Box C/D Core Proteins and snoRNP Structure 

 Box C/D snoRNAs bind a small set of core proteins to establish ribonucleoprotein (RNP) 

complexes (Figure 2).  Terminal box C/D and internal C’/D’ snoRNA motifs serve as protein 

binding sites for RNP assembly and it is the bound core proteins that carry out the nucleotide 2’-

O-methytransferase reaction.  Four well conserved core proteins bind eukaryotic box C/D 

snoRNAs.  They are the 15.5kD protein (Snu13p in yeast), nucleolar proteins 56 (Nop56) and 58 

(Nop58), and the methyltransferase fibrillarin.  The 15.5kD protein directly binds the box C/D 

K-turn, but not box C’/D’ motifs, initiating assembly of box C/D snoRNPs (30,93-95).  The use 

of nucleotide analog interference mapping (NAIM) has suggested that 15.5kD’s inability to bind 

C’/D’ motifs may lie in slight structural differences that arise when a K-turn possesses a terminal 

loop instead of a stem II structure (96).   

 

The Nop56 and Nop58 core proteins are highly homologous and essential for nucleotide 

modification and ribosome biogenesis (27,97).  Cross-linking experiments have shown that 

Nop58 interacts with box C whereas Nop56 interacts with box C’ (94).  This suggests that 

Nop56 and Nop58 core proteins bind the K-turn or K-loops, respectively, although their 

asymmetric distribution in the snoRNP complex has not yet been confirmed in RNP assembly 

experiments.  Binding of both Nop56 and Nop58 requires stem II of the box C/D motif (98).  

These core proteins are likely to be RNP structural proteins, although their role in the 

methylation reaction or its regulation cannot be ruled out at this time.   
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The methyltransferase fibrillarin interacts with both Nop56 and Nop58 and can be cross-

linked to both the box C/D and C’/D’ motifs (27,94).  Evidence establishing fibrillarin as the 

methyltransferase enzyme includes the presence of an S-adenosylmethionine (AdoMet)-

dependent methyltransferase-like domain that is required for methylation activity (99,100) and 

the observation that disruption of the yeast fibrillarin gene results in the loss of pre-rRNA 

methylation (86).   

 

b. Archaeal Box C/D Core Proteins and In Vitro sRNP Assembly 

 Archaeal box C/D sRNAs bind three core proteins which are highly homologous to the 

eukaryotic core proteins (29,34,35).  Ribosomal protein L7, homologous to eukaryotic 15.5kD, 

recognizes both box C/D and C’/D’ motifs to initiate box C/D and C’/D’ RNP assembly.  A 

single Nop56/58 core protein, highly homologous to the eukaryotic Nop56 and Nop58 pair, also 

binds both box C/D and C’/D’ motifs.  The third core protein fibrillarin binds both complexes to 

complete box C/D and C’/D’ RNP assembly.  Much of what is presently known about box C/D 

RNP structure and assembly comes from examination of in vitro assembly of the archaeal sRNP 

using in vitro synthesized box C/D sRNAs and recombinant sRNP core proteins.  These in vitro 

assembly studies revealed an order of assembly with L7 initiating RNP formation followed by 

Nop56/58 and then fibrillarin binding (34-36).  Binding of the L7 core protein induces structural 

changes in both box C/D and C’/D’ motifs (101-103).  These structural changes are required for 

subsequent Nop56/58, but not fibrillarin, binding.  Nop56/58 and fibrillarin form a stable dimer 

in the absence of the sRNA and/or L7 and evidence suggests that it is the dimer that binds the 

assembling box C/D and C’/D’ RNP complexes (35,103-105).  In contrast to the “asymmetric” 

eukaryotic snoRNP complex, the binding of all three core proteins to the box C/D and C’/D’ 
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motifs assembles a “symmetric” sRNP (Figure 2). 

 

c. Emerging Core Protein and RNP Crystal Structures  

Emerging crystal structures of core proteins, the K-turn, and sRNA:core protein sub-

complexes are beginning to reveal the detailed architecture of the box C/D RNP.  The ease of 

expressing soluble, recombinant archaeal core proteins has greatly facilitated these studies and 

all three archaeal core proteins have yielded crystal structures at detailed resolution.  Crystal 

structures of free L7 core protein, the K-turn, and the L7:K-turn RNP have shown that L7 

binding induces a conformational change or “remodels” the sRNA (54,95,101,102,106).  This 

induced fit has been confirmed in fluorescence resonance energy transfer (FRET) experiments 

(102).  Both the L7 and 15.5kD core proteins lock the K-turn into a tightly kinked structure 

characterized by stacked stem I and stem II helices bent at approximately 60°, hence the 

designation of kink-turn for this RNA element (53,107).   Particularly important for binding is 

the requirement of a pyrimidine nucleotide from box C (UGAUGA) which is extended and 

inserted into a cleft of the L7 protein.  A co-crystal structure of Archaeoglobus fulgidus 

Nop56/58 and fibrillarin has provided the molecular details of this core protein dimer (104).  S-

adenosylmethionine is bound to the methyltransferase domain of fibrillarin and biophysical 

studies have indicated that Nop56/58 binding to fibrillarin helps stabilize Ado-Met in its binding 

pocket (108).  A recent crystal structure of the Nop56/58 homolog hPrp31 bound to the 

15.5kD:U4 K-turn RNP has revealed that Nop56/58 and hPrp31 bind the K-turn-L7/15.5kD 

protein complex through their Nop domains and require interaction with both the K-turn and the 

L7/15.5kD protein (109).  Despite crystallization of all the individual components of the 

complex, a crystal structure of the fully assembled box C/D sRNP has thus far proved elusive. 



 14

 

d. Investigating Methylation Function Using In Vitro Assembled Archaeal Box C/D sRNP 

The archaeal in vitro assembly system has enabled investigations of box C/D sRNP 

methylation function with respect to sRNP structure and the role of the sRNA and individual 

core proteins.   The assembled box C/D sRNP is catalytically active and guides site-specific 

methylation of target RNAs using both D and D’ guide sequences.  Target RNA methylation is 

nucleotide-specific and dependent upon fibrillarin binding and the presence of S-

adenosylmethionine (34).  Further studies have shown that efficient methylation of D and D’ 

guide RNAs requires both box C/D and C’/D’ RNPs be juxtaposed in a fully assembled sRNP 

(35).  The juxtaposed box C/D and C’/D’ RNPs are dependent upon the highly conserved spatial 

positioning of each RNP separated by 12 nucleotides (52).  This suggests molecular interactions 

between the two complexes and/or induced sRNA remodeling is important for methylation 

function.  This is not likely the case for the eukaryotic box C/D snoRNPs that guide the 

methylation using both D and D’ guide sequences where the spatial positioning of box C/D and 

C’/D’ RNPs is not conserved and is often quite distant.  Finally, both in vivo and in vitro studies 

have examined the base pairing interactions of the target RNA with the sRNA guide sequence 

(110,111).  A minimum RNA:RNA duplex of 9-11 nucleotides is required and Watson-Crick 

pairing is essential.  Interestingly, the ability of the in vitro complex to methylate target 

nucleotides positioned within thermally stable double-stranded secondary structures may suggest 

an ability of the core complex to facilitate target RNA melting necessary for base pairing with 

the sRNA guide sequence. 
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V. Box C/D RNP Biogenesis 

a. Genomic Organization of Eukaryotic Box C/D snoRNA Genes 

 The genomic organization of eukaryotic box C/D RNAs falls into two major categories.  

Some box C/D snoRNA genes are independently transcribed from snoRNA-specific promoters 

with the primary transcript possessing a single or multiple snoRNA species.  However, the 

majority of box C/D snoRNAs are encoded within introns of host genes and transcribed by RNA 

polymerase II as part of the host precursor transcript.  Fungi, plants, trypanosomes and 

unicellular organisms possess primarily independently-transcribed snoRNA genes, although 

snoRNAs encoded within host gene introns are present.  In metazoan organisms, snoRNA coding 

sequences are overwhelmingly positioned within host gene introns (reviewed in (13) and (48)).  

For both snoRNA categories, the primary transcripts undergo post-transcriptional processing to 

produce mature snoRNA species.   

 

b. Independently-Transcribed and Intronic Eukaryotic Box C/D snoRNA Genes 

Box C/D snoRNA genes that are independently-transcribed using a snoRNA-specific 

promoter may be found as single or clustered species.  U3 is the best characterized box C/D 

snoRNA that is independently-transcribed as a single snoRNA.  U3 genes have been identified 

and characterized in fungi, protists, vertebrates, insects and plants (reviewed in (13)).  They are 

most often found in multiple copies and dispersed throughout the genome, although occurrence 

of pseudogenes in vertebrates can make determination of gene copy number difficult. (112-114).  

Box C/D snoRNA genes in yeast, plants, and trypanosomes are often organized into clusters and 

are transcribed as a polycistronic precursor using an snoRNA-specific promoter (83,115-118).  

These polycistronic transcripts are subsequently processed to produce the mature individual box 
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C/D snoRNAs. 

 

 The predominant box C/D snoRNA gene organization in metazoans, and particularly 

vertebrates, is that of encoding within introns of host RNA Pol II transcripts.  Typically, the 

intronic snoRNAs are located in protein-coding pre-mRNA introns.  Intronic box C/D snoRNAs 

are frequently found in multiple introns of common host genes with each intron limited to a 

single encoded snoRNA.  Intronic box C/D snoRNAs are often found in the same host gene in 

different organisms but this organization is not universal, and frequently an snoRNA species is 

found in the same host gene but in different introns (reviewed in (13)).  Host genes often possess 

isomers of the same intronic snoRNA species (119-121).  Host genes also encode different 

snoRNA species in different introns ((122,123) and reviewed in (13)).  The intronic snoRNAs 

are characteristically found within host genes that encode proteins involved in ribosome 

biogenesis or protein synthesis.  Ribosomal protein genes very often contain intronic snoRNAs 

(13,48).  The positioning of intronic snoRNAs within protein coding genes important for 

ribosome biogenesis and protein synthesis suggests a possible coordination of the snoRNA and 

ribosome biogenesis pathways.  Of particular interest are the intronic box C/D snoRNAs encoded 

with pre-mRNAs that do not encode a protein such as the UHG genes of human and Drosophila 

melanogaster (124-128).  In these cases, the host precursor transcript simply serves as a carrier 

for the encoded intronic snoRNAs. 

 

c. Archaeal Box C/D sRNA Genes 

Most of the limited information concerning archaeal box C/D sRNA genes comes from 

an analysis of several hyperthermophile Pyrococcus genomes (16).  Box C/D sRNA genes are 
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primarily intergenic although some do overlap upstream and/or downstream open reading frames 

on the same DNA strand.  They typically exhibit very little clustering, although in S. solfataricus 

and P. fulgidus two sRNA genes (sR10/sR11 and sR26/sR60, respectively) are separated by only 

a few nucleotides and appear to be co-transcribed (15).  In P. abyssi, the box C/D sRNA genes 

are preferentially located in non-coding regions of the genome, again with little clustering.  

Interestingly, the box C/D sR40 of Pyroccocus and A. fulgidus is found within the intron of the 

tRNATrp gene and it is this sRNA that is responsible for 2’-O-methylation of two nucleotides in 

the tRNATrp itself (129-131).  Nothing is presently known about the RNA polymerase promoters 

responsible for sRNA transcription as obvious promoter elements are not observed and detailed 

analysis of possible sRNA precursor transcription has not been examined.    

 

d. Transcription and Processing of Independently Transcribed Box C/D snoRNAs 

Independently transcribed box C/D snoRNA genes possess their own promoter and 

terminator regions as well as enhancer elements flanking the coding sequence.  They typically 

possess promoters similar to protein coding genes and are typically transcribed by RNA 

Polymerase II (13,132).  Transcription of U3 is driven by a Pol II promoter in vertebrates and 

possesses several conserved sequence elements.  These include TATA-like boxes, proximal and 

distal sequence elements (PSE and DSE), and a “U3 box” specific for U3 at the DSE (113,133-

135).  Plant U3 genes also possess TATA-like boxes but are transcribed by RNA Pol III due to 

the shorter spacing between the TATA box and upstream sequence elements (USE) (136,137).  

The U3 transcripts of vertebrates are capped at the 5’ terminus with trimethylguanosine (TMG) 

whereas those of plants are O-methyl capped (138).  Other Pol III transcribed box C/D snoRNA 

genes include snR52 in yeast (139) and several plant box C/D snoRNAs clustered with tRNA 
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genes.  The plant snoRNA genes are co-transcribed with tRNA as a tRNA-snoRNA precursor 

using the tRNA gene’s RNA Pol III promoter (140).  Yeast promoters of box C/D snoRNA 

genes that are independently transcribed by Pol II often contain A/T rich stretches and a TATA 

box.  Upstream Rap1p or Abf1p binding sites that are typical for yeast ribosomal protein genes 

are also present sometimes (115).  Box C/D snoRNA promoters for independent transcripts in 

plants are not well characterized but do contain putative TATA boxes (116).  Independently-

transcribed box C/D snoRNAs are often polycistronic.  The nascent transcripts are capped with 

trimethylguanosine (TMG) but undergo 5’ end processing involving endonucleases to produce 

processing intermediates that are matured by trimming exonucleases.  In yeast, the ortholog of 

bacterial endonuclease RNase III, Rnt1p, and the exonucleases Rat1p and Xrn1p are responsible 

for snoRNA processing and trimming (115,141-143). 

 

Termination of Pol II-transcribed genes can result in either polyadenylated or non-

polyadenylated transcripts.  The box C/D snoRNAs are not polyadenylated but current 

understanding of 3’ end formation is complicated by the overlapping machinery involved in 

these two pathways and shared components which include the core cleavage and polyadenylation 

factor (CPF) complex and the exosome (144).  3’ End formation of independently transcribed 

box C/D snoRNA precursors involves factors Nrd1p, Nab3p, and Sen1p which appear to be 

specific for non-poly(A) termination and 3’ end pre-snoRNA processing (145).  Nrd1p and 

Nab3p recognize and bind specific sequence elements upstream of the termination signal of box 

C/D snoRNA transcripts, although their recognition of these sequences alone is not sufficient to 

prevent polyadenylation and direct proper 3’ end formation (146).  Nrd1p interacts with the 

exosome, cap-binding complex, and Pol II and is therefore implicated in coordinating 
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transcription and 3’ end formation with exosome processing (147).  3’ End formation is also 

dependent upon the co-transcriptional assembly of the box C/D snoRNP (148,149).  Thus, 

termination and 3’ end formation may rely on a monitoring mechanism whereby Nrd1p, Nab3p, 

and Sen1p are involved in detecting the assembled snoRNP upstream of the termination signal 

and directing a bypass of transcript polyadenylation while activating exosome-mediated 3’ end 

processing.     

 

e. Transcription and Processing of Intronic Box C/D snoRNAs 

Box C/D snoRNA genes, particularly those of metazoan organisms, are positioned within 

introns of host genes that may be protein or non-protein coding.   Intronic snoRNAs are excised 

from the intron during host precursor splicing (reviewed in (13)).  The intronic snoRNA host 

genes are primarily driven by promoters containing terminal oligopyrimidine tracts or TOP 

promoters, which are characteristic of a broad family of protein-coding genes involved in 

ribosome biogenesis and protein synthesis (128,150-152).  Processing of intronic box C/D 

snoRNAs requires specific positioning of the snoRNA within the host intron, approximately 50 

nucleotides upstream of the branchpoint (153,154).  Recently, a splicing factor designated intron 

binding protein 160 (IBP160) has been identified that defines the snoRNA distance from the 

branchpoint (155).  IBP160 binds the intron approximately 35-40 nucleotides upstream of the 

branch point in a sequence-independent manner.  Intronic snoRNA processing also requires 

snoRNP assembly.  Immunoprecipitation experiments with fibrillarin antibodies have shown that 

the snoRNP complex is assembled while the snoRNA is still part of the unspliced, host pre-

mRNA transcript.  Accordingly, the box C/D snoRNP was found to assemble in the C1 splicing 

complex where IBP160 exerts its function (156).  Thus, it appears that IBP160 may be a key 
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factor linking intronic box C/D snoRNP assembly and intronic snoRNA processing with host 

pre-mRNA splicing events.   

 

Upon pre-mRNA splicing, box C/D snoRNAs are excised from the intron and trimmed to 

a mature snoRNA using exonucleases.  In yeast, an RNase III enzyme Rnt1p debranches the 

lariat intron.  Rnt1p cleavage requires interaction with Nop1p (fibrillarin) of the assembled box 

C/D snoRNP (157).  This cleavage provides entry sites for exonucleolytic trimming by the 5’-3’ 

exonucleases Rat1p and Xrn1p and the 3’-5’ trimming activities of Rrp6p and the exosome 

(158,159).  Using a minor pathway, intron-encoded snoRNAs can be directly excised from 

unspliced pre-mRNA using an endonuclease followed by exonucleolytic trimming (160,161).  

Box C/D snoRNAs that are processed directly from unspliced pre-mRNAs appear to be released 

by a mechanism similar to that observed for independently-transcribed snoRNAs (157).   

 

f. Box C/D snoRNP Transport 

 Box C/D snoRNA transcription, processing, and snoRNP assembly occurs in the 

nucleoplasm before snoRNP transport into the nucleolus.  Transport to the nucleolus requires the 

box C/D core motif and all four core proteins for nucleolar localization (162-166).  Experiments 

indicate that in higher eukaryotes, box C/D snoRNPs require transit through Cajal bodies for 

maturation before entering the nucleolus (165).  In Hela cells, independently-transcribed U3 

snoRNA precursors are found in the nucleoplasm as large multiprotein processing complexes 

containing factors linked to RNA processing (hRrp46, LSm 2-8, La protein),  snoRNP assembly 

(Tip48, Tip49, Nopp140), and RNA transport (PHAX, CRM1) (167).  The snRNA export factor 

PHAX is required for U3 transport to the Cajal body where it is m3G-capped and undergoes 
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CRM1-dependent transport to the nucleolus (168,169).  Intronic and uncapped box C/D 

snoRNAs may use a variation of this nucleolar transport pathway.  U14 nucleolar localization is 

impaired when PHAX is depleted and some intronic and uncapped box C/D snoRNAs can bind 

PHAX in the absence of the cap binding complex (167,169).   

 

 

 

Future Directions and Experimental Challenges 

a. Box C/D RNA Diversity, Targets, and Functions 

 Computational approaches will continue to define box C/D RNA populations in both 

archaeal and eukaryotic organisms.   Improvements in bioinformatics approaches coupled with 

increasing genome data bases will identify new box C/D RNAs to reveal new populations and 

how these populations vary between organisms.  These analyses may reveal conserved box C/D 

RNAs implying conserved functions in different organisms.  More certain is the identification of 

new RNAs unique to given organisms.  Defining new RNAs and their potential targets may well 

suggest novel functions.  Comparison of archaeal and eukaryotic organism-specific populations 

should also provide insight into the rate of evolution for this class of small non-coding RNAs and 

how rapidly box C/D RNA diversity (and function?) is evolving. 

 

Biochemical approaches will be required to identify box C/D RNAs that do not exhibit 

well conserved box sequence elements.  Defining these RNAs will likely require either 

biochemical fractionation of small non-coding RNA populations or immunoprecipitation of these 

RNAs using antibodies against the RNP core proteins.  The observation of myriad RNAs bound 
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to the L7 core protein in Archaea may suggest a greater diversity of C/D box RNAs than 

originally anticipated (170).  Non-conventional box C/D RNAs may be associated with novel 

box C/D RNA-binding proteins implying novel RNP structures or perhaps functions.  Indeed, it 

is a formal possibility that the protein(s) of these RNPs is the functional component of the 

complex working independently of the RNA’s guide sequence.  Certainly this is the case for the 

archaeal H/ACA core proteins that function as a pseudouridylate synthase for a tRNA nucleotide 

in the absence of bound H/ACA RNA (171).    Evidence does not indicate that the box C/D core 

proteins can methylate nucleotides in the absence of the RNA but what other “moonlighting” 

functions might the box C/D core or accessory proteins carry out?  Certainly this is the case for 

the L7/15.5kD core protein where it functions in Archaea as a ribosomal protein and in 

eukaryotes as a U4 snRNP protein (29,30).  Are there other functions for the core proteins? 

 

Both computational and biochemical approaches are certain to identify not only new box 

C/D RNAs but also new orphan RNAs with unknown targets.  The occurrence of orphan box 

C/D RNAs raises the formal possibility that the function of these orphan RNAs is not determined 

by their guide sequence.  Thus, novel functions could be expected for these box C/D RNAs and 

RNPs.  A particular challenge will be defining tissue-specific and development-specific box C/D 

RNAs.  It is these unique and perhaps rare box C/D RNAs that are most likely to exhibit novel 

functions as do the human/mouse brain-specific box C/D RNAs.  Identification of tissue-specific 

RNAs will require biochemical approaches isolating box C/D RNAs specifically expressed in a 

given tissue or developmental stage and identification through cloning and sequencing 

approaches.  It will be interesting to determine how wide spread is the tissue-specific expression 

of the box C/D RNAs and ultimately if these same RNAs are specifically expressed in the same 
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tissue of different eukaryotes or within different tissues of a given eukaryote.  These uniquely 

expressed RNAs may well modify nucleotides that, in turn, regulate other RNA metabolic 

processes such as observed for the brain-specific box C/D RNAs.  Thus, the effect of box C/D 

RNA-guided modification may extend well beyond methylation of a given nucleotide to simply 

effect target RNA structure or function. 

 

b. Box C/D RNP Structure and Methylation Function 

Archaeal in vitro assembly systems have facilitated detailed examinations of box C/D 

sRNP structure and methylation function.  However, important questions concerning this 

minimal RNA:protein enzyme remain.  What are the inter-RNP interactions of juxtaposed box 

C/D and C’/D’ RNPs (protein-protein contacts?) which are required for efficient nucleotide 

modification and how do they affect RNP structure and, in turn, methylation function?  As with 

eukaryotic snoRNPs, do the archaeal complexes function in more than nucleotide methylation?  

One would predict that, at the very least, chaperone activity to assist in RNA folding should be 

anticipated.   

 

Most archaeal box C/D sRNPs guide the methylation of two target nucleotides, 

sometimes positioned within different target RNAs.  What is the mechanism of target substrate 

interaction with the respective guide sequences?  Can a box C/D sRNP bind two target RNAs 

simultaneously to carry out guided methylation from both complexes or is there interplay 

between the two RNPs such that only one is catalytically active at any given time?  Recent work 

indicates the importance of the RNP core proteins for target RNA binding (110).  What are these 

target RNA:protein interactions and how do they enhance substrate turnover?  Do the core 
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proteins assist in unfolding highly structured RNAs and how is this accomplished as none of the 

core proteins appear to possess helicase activity as evidenced by the lack of known helicase 

domains?  What is the topology of the target RNA in an RNA duplex when bound to the guide 

sequence?  A target RNA:guide sequence of 12 nucleotides is equivalent to a full turn of an A 

form RNA.  This would suggest that this RNA duplex is distorted or untwisted to accommodate 

target RNA binding to the sRNP.  What is the function of the known RNA-binding motifs on 

both fibrillarin and Nop56/58 and do these function in target RNA binding and positioning of the 

target nucleotide at the catalytic site?  Many questions remain as to the function of specific 

domains of each core protein and their roles in sRNP assembly and methylation function.  The 

structural details obtained from a crystal structure of this sRNP both free and bound with target 

RNA substrate will help to address some of these questions. More challenging will be enzymatic 

analyses of the methylation mechanism(s).  Assembled sRNPs have thus far exhibited low 

efficiencies of methylation.  Perhaps additional accessory proteins will be required for full 

activity of in vitro assembled sRNPs.  Certainly, in vivo genetic systems will ultimately be 

important to confirm in vitro results.     

 

 The archaeal sRNP is certain to serve as a minimal model complex for examination of the 

more structurally and functionally diverse eukaryotic snoRNP.  The diversity of the eukaryotic 

complex poses interesting questions as well as specific challenges.  How similar is the eukaryotic 

box C/D snoRNP both structurally and functionally with respect to the archaeal sRNP?  

Although there are only a few double guide eukaryotic box C/D snoRNP, are they also 

constrained by spatial positioning of the box C/D and C’/D’ RNP for methylation activity?  What 

is the stoichiometry of the snoRNP core proteins on each motif, and specifically, are Nop56 and 
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Nop58 differentially distributed on the box C/D and C’/D’ RNPs as indicated by crosslinking 

experiments?  If so, then how have these core proteins evolved their RNA binding domains to 

recognize the two very similar but different RNA motifs?  A similar question can be asked for 

the L7/15.5 kD homologs where the archaeal protein recognizes K-turn and K-loop elements 

whereas the eukaryotic homolog binds only the K-turn.  Has this evolution of core protein 

binding capability allowed more evolutionary drift in the C’/D’ motifs that are presently 

observed, perhaps at the same time promoting greater variation in eukaryotic box C/D snoRNA 

structural and functional diversity?  Because of the diversity in size and folded structures of the 

eukaryotic box C/D snoRNAs, do individual snoRNPs possess unique proteins distinct for a 

given RNA species?  Are there specific snoRNP proteins (either core or accessory) that are 

characteristic of the non-methylation functions?  These snoRNA-specific proteins might include 

helicases for chaperone or RNA folding activity as has been demonstrated for the Dbp4 protein 

of the yeast U14 snoRNP (172).   

 

A particular challenge will be the establishment of in vitro RNP assembly systems for the 

eukaryotic box C/D snoRNP.  Such systems can directly address specific structural and 

functional questions.  However, the eukaryotic complex is likely to be difficult to assemble in 

vitro as it appears to require an array of accessory proteins or assembly factors for snoRNP 

formation.  Of course crystal structures of the assembled eukaryotic snoRNP will be valuable but 

are unlikely in the near future.  In contrast to Archaea, genetic systems are now available to 

study snoRNP structure and function in vivo.  Both genetic manipulations in yeast as well as 

transfection approaches in cell culture presently provide tools to address many questions.  Of 

particular interest will be comparison of archaeal and eukaryotic complexes to reveal the 
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evolution of this RNA:protein enzyme and perhaps suggest how these RNPs acquired new 

functions.   

 

c. Box C/D RNP Biogenesis 

Both intronic and independently-transcribed eukaryotic snoRNA genes have been 

characterized in a number of eukaryotic organisms for a fundamental understanding of snoRNA 

transcription.  Still lacking however is an understanding of snoRNA transcriptional regulation 

and how snoRNA biogenesis may be coordinated with other biosynthetic pathways, most 

specifically ribosome biogenesis.  Is snoRNA transcription and processing coordinately 

regulated with pre-rRNA transcription and/or ribosome assembly?  If so, are there snoRNA 

transcription or processing factors involved in this coordination?  Are the clustered snoRNA 

genes, either intronic snoRNAs in common host genes or polycistronic transcripts, organized for 

coordinated function?  In contrast, transcription of the archaeal snoRNA genes has not been 

characterized and much remains to be learned.  What are the sRNA promoters and which 

elements are shared with other sRNA genes or are unique to a given sRNA species?  Are the 

sRNA genes coordinately expressed with overlapping genes or independently transcribed and 

what are the precursor sRNA transcripts, if any?   

 

 With respect to box C/D RNP assembly, what are the eukaryotic proteins needed to 

assemble the complex and are there corresponding assembly factors in Archaea?  For the 

eukaryotic snoRNP, how do these assembly factors interact if at all with the spliceosome and/or 

the transcription complex for coordinate regulation?  Thus far, only IBP60 has been shown to 

coordinate splicing with snoRNP synthesis (155).  What are the accessory proteins and do they 
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remain bound to the complex to affect RNP structure or function?  Is snoRNP assembly 

completed in the nucleoplasm or are there additional assembly steps in the Cajal bodies or even 

the cell cytoplasm?  Do all snoRNP transit through the Cajal bodies or are there several transport 

pathways to the nucleolus?  Does this transport utilize specific trafficking proteins?  Do 

independently-transcribed and intronic snoRNAs utilize different assembly and trafficking 

pathways?  Finally, how are the snoRNAs and snoRNPs turned over?  While it is apparent that 

box C/D RNAs are relatively stable small non-coding RNAs, nothing is known about their 

degradation pathway.  What are the nucleases involved in snoRNA turnover and are they 

common to other RNA degradation pathways?  Furthermore, is snoRNA/snoRNP turnover 

coordinated with repression of ribosome synthesis or other metabolic pathways?  These and 

many more questions await further investigation.  Results from these investigations are certain to 

provide new and unexpected insights into the assembly, structure, and function, of this 

evolutionarily ancient RNA:protein complex.    
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Figure Legends 

 

Table 1. Box C/D RNA Databases and Search Engines 

 

Figure 1. Archaeal and Eukaryotic Box C/D RNAs and Their Target RNAs 

The secondary structures of archaeal and eukaryotic box C/D RNAs are shown with box 

C, D, C’, and D’ nucleotide sequences designated in bold.  Representative target RNAs are base 

paired with the D and D’ guide sequences and the nucleotides targeted for methylation indicated.  

Box C/D and C’/D’ motifs are designated as well as those structural differences characteristic of 

the archaeal and eukaryotic box C/D RNAs.  Know target RNAs of the archaeal and eukaryotic 

box C/D RNAs are shown below. 

 

Figure 2. Archaeal and Eukaryotic Box C/D Ribonucleoprotein Complexes 

Archaeal and eukaryotic box C/D RNAs are shown with the RNP core proteins bound to the box  

C/D and C’/D’ motifs.  The binding of all three archaeal core proteins to both the box C/D and 

C’/D’ motifs assembles a symmetric sRNP.  The differential distribution of the eukaryotic  

15.5kD, Nop56, and Nop58 core proteins binding the box C/D and C’/D’ motif establishes an  

asymmetric snoRNP.  (Crosslinking experiments have implied the differential distribution of  

Nop58 and Nop56 on the eukaryotic box C/D and C’/D’ motifs, respectively (94)). 

 
 



Table 1 
 
 

DATABASE WEBSITE COMMENTS / UTILITY REFERENCES 

snoRNA Database http://lowelab.ucsc.edu/snoRNAd
b/ 

Box C/D snoRNAs from S. cerevisiae, A. thaliana, and 
currently 8 Archaea are sorted by name, target and genome 
locus.  

Lowe and Eddy, 1999; 
Omer et al., 2000; Brown et 
al., 2001 

Yeast snoRNA Database http://people.biochem.umass.edu/f
ournierlab/snornadb/main.php 

Box C/D and H/ACA snoRNA database specific for yeast.  
Provides interactive 3-D view of rRNA modifications. 

Samarsky and Fournier, 
1999; Piekna-Przybylska et 
al., 2007 

snoRNA-LBME-db http://www-snorna.biotoul.fr/ 
 

Human box C/D and H/ACA snoRNA database.  Find 
snoRNAs by name, target sequence or modification, or 
genomic location. 

Lestrade and Weber, 2006 

Plant snoRNA Database http://bioinf.scri.sari.ac.uk/cgi-
bin/plant_snorna/home 

Database of currently 18 plant species in a tabulated and 
downloadable sequence format. Brown et al., 2003 

The snoRNP Database http://www.mbio.ncsu.edu:8001/h
ome.html 

Collection of 6,349 small nucleolar RNAs and 302 associated 
proteins.  Includes genus and species, accession numbers, 
loci, molecular family/class, and citations. 

 

Human snoRNA Database http://www.trex.uqam.ca/~snorna/ 
Contains the sequences of currently 463 human snoRNAs.  
Provides 2-D structure and energy information imported 
from mFold. 

 

sno/scaRNAbase http://gene.fudan.sh.cn/snoRNAba
se.nsf 

Database consisting of 1979 sno/scaRNAs from 85 
organisms.  Contains sequence, target site, accession number, 
references and allows users to perform BLAST searches. 

Xie et al., 2007 

RNAdb 2.0 http://research.imb.uq.edu.au/RN
Adb 

Comprehensive database of mammalian non-protein-coding 
RNAs (ncRNAs). Provides nucleotide sequences and 
annotations for tens of thousands of ncRNAs. 

Pang et al., 2005, 2007 

 
ALGORITHM / SEARCH 

ENGINE WEBSITE FUNCTION / UTILITY REFERENCES 

snoSeeker http://genelab.zsu.edu.cn/snoseeke
r/  

Searches for box C/D snoRNAs in the genomic alignment of 
two or more organisms. Yang et al., 2006 

snoScan 
 

http://lowelab.ucsc.edu/snoscan/ 
 

Searches mammalian, yeast, or archael genomic sequences 
for box C/D snoRNA genes with a probabilistic model 
starting from a query or target RNA sequence. 

Lowe and Eddy, 1999; 
Schattner et al., 2005 

SNO.pl http://hsc.utoledo.edu/bioinfo/eid/  
Searches for conserved structures characteristic of C/D box 
snoRNAs within the Mammalian Orthologous Intron 
Database (MOID). 

Fedorov et al., 2005 
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