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SUMMARY

RNAi is widely appreciated as a powerful regulator of
mRNA translation in the cytoplasm of mammalian
cells. However, the presence and activity of RNAi
factors in the mammalian nucleus has been the sub-
ject of considerable debate. Here, we show that
Argonaute-2 (Ago2) and RNAi factors Dicer, TRBP,
and TRNC6A/GW182 are in the human nucleus and
associate together in multiprotein complexes. Small
RNAs can silence nuclear RNA and guide site-
specific cleavage of the targeted RNA, demon-
strating that RNAi can function in the human nucleus.
Nuclear Dicer is active and miRNAs are bound to nu-
clear Ago2, consistent with the existence of nuclear
miRNA pathways. Notably, we do not detect loading
of duplex small RNAs in nuclear extracts and known
loading factors are absent. These results extend
RNAi into the mammalian nucleus and suggest that
regulation of RNAi via small RNA loading of Ago2 dif-
fers between the cytoplasm and the nucleus.
INTRODUCTION

Since the discovery of mammalian RNAi (Elbashir et al., 2001),

over 50,000 reports have described the use of small interfering

RNAs (siRNAs). Almost all of these studies have assumed that

the regulation of RNAi and its silencing activity occurs in the

cytoplasm (Gurtan and Sharp, 2013). Whether RNAi can function

in the mammalian nucleus and regulate processes like transcrip-

tion or splicing has remained unclear (Castel and Martienssen,

2013; Harel-Bellan et al., 2013). Likewise, what role the nuclear

compartment might play in the regulation of RNAi pathways is

unknown. These uncertainties have significantly hampered

investigation of nuclear RNA biology and the development of nu-

clear RNAi as a laboratory tool and potential therapeutic.

The assumption that mammalian RNAi is confined to the

cytoplasm has been supported by reports that siRNAs cannot

silence introns (Vickers et al., 2003; Zeng and Cullen, 2002). In

addition, microscopy has shown a cytoplasmic distribution of

RNAi factors, such as Argonaute-2 (Ago2), to P-bodies and the

endoplasmic reticulum (ER) (Ikeda et al., 2006; Stalder et al.,
C

2013). Some laboratories, however, have suggested that Ago2

and other RNAi factors can be found in the nucleus (Ando

et al., 2011; Chu et al., 2010; Doyle et al., 2013; Ohrt et al.,

2012; Rüdel et al., 2008; Till et al., 2007; Weinmann et al.,

2009). siRNAs have been reported to silence the nuclear

enriched RNAs 7SK and U6 (Ohrt et al., 2008; Robb et al.,

2005). Although nuclear RNAi activity and localization of RNAi

factors to the nucleus have been reported previously, questions

about the purity of cell extracts (Holding, 2004), the resolution of

localization studies, and nucleocytoplasmic transport of the RNA

targets and products of RNAi have kept nuclear RNAi a contro-

versial subject.

MicroRNAs (miRNAs) enter the RNAi pathway by binding Ago

proteins (Gurtan and Sharp, 2013). In the cytoplasm, miRNAs

guide Ago proteins to 30 untranslated regions and destabilize

or inhibit translation of mRNAs (Bartel, 2009; Gurtan and Sharp,

2013; Valencia-Sanchez et al., 2006). miRNAs have also been

found in the nucleus (Jeffries et al., 2011; Katahira and Yoneda,

2011; Liao et al., 2010), but their biological roles are unknown.

Both synthetic siRNAs and microRNAs have been shown to

induce changes in splicing (Alló et al., 2009; Liu et al., 2012)

and transcription (Janowski et al., 2007; Li et al., 2006; Matsui

et al., 2013;Morris et al., 2004). However, themechanismsmedi-

ating these processes remain controversial, due in part to the

debate over the presence and activity of nuclear RNAi factors.

During cytoplasmic RNAi, small RNA loads into the RNA

induced silencing complex (RISC), the complex recognizes a

complementary RNA target, and target cleavage can occur at

a specific site (Wilson and Doudna, 2013). Several factors have

been implicated in the loading of small RNAs into Ago proteins

(programming) and thematuration of RISC in human cells. These

include the protein folding chaperones Hsp90 and Hsc70

(Iwasaki et al., 2010) and the component 3 promoter of RNAi

(C3PO) complex composed of Translin and TRAX (Ye et al.,

2011). Hsp90/Hsc70 are implicated in chaperone-like mecha-

nisms that may open Ago proteins to accommodate the initial

binding of a duplex RNA (Iwasaki et al., 2010). In addition,

Hsp90 chaperone activity in RNAi programming and RISCmatu-

ration has been shown to be dependent on the presence of

cochaperones, including Aha1, FKBP4/5, Cdc37, and p23

(Martinez et al., 2013; Pare et al., 2013). C3PO possesses

single-strand nuclease activity and has been shown to accel-

erate passenger strand RNA removal from Ago to mature the

RISC complex (Liu et al., 2009; Ye et al., 2011).
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Figure 1. Microscopy Reveals Ago2 in Human Cell Nuclei

Immunofluorescence microscopy of endogenous Ago2 in HeLa cells. z

sections are stacked (6 mm), projected three-dimensionally, and rotated to

highlight nuclear staining. Scale bar represents 3 mm.
Ago2 binds small duplex RNA and forms the core of RISC

(Hammond et al., 2000; MacRae et al., 2008; Wilson and

Doudna, 2013). Other key players involved in RISC include the

pre-miRNA processing enzyme Dicer, the TAR RNA-binding

protein (TRBP), and TNRC6A (GW182 homolog) (Daniels and

Gatignol, 2012; Lazzaretti et al., 2009; Ma et al., 2012; MacRae

et al., 2008). Ago-RISC complexes recognize RNAs complemen-

tary to the guide strand (Hammond et al., 2000). When the guide

strand is fully complementary to target RNA, Ago2 can catalyze

site-specific phosphodiester bond cleavage (‘‘slicer’’ activity)

(Liu et al., 2004; Meister et al., 2004; Wang et al., 2008).

To resolve the controversy over mammalian nuclear RNAi, we

investigated the localization, interaction, and activity of known

RNAi factors in human cell nuclei. Here, we show that Ago2

and other RNAi factors are present in the nucleus and can asso-

ciate in multiprotein complexes. Small RNAs in complex with

Ago2 can silence nuclear RNA and induce site-specific cleav-

age. Nuclear Dicer is catalytically active and miRNAs are bound

to nuclear Ago2. In contrast, we did not detect loading of duplex

RNA in nuclei and most RISC loading factors are absent. These

results place the protein machinery necessary for RNAi recogni-

tion inside the mammalian cell nucleus but suggest key differ-

ences between nuclear and cytoplasmic RNAi.

RESULTS

RNAi Factors Are Present in Human Cell Nuclei
We began our study by using HeLa cells to examine the localiza-

tion of Ago2, the catalytic core of RNAi (Liu et al., 2004). We used
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wide-field immunoepifluorescence microscopy with blind

deconvolution because the technique is ideal for rapid and

high-sensitivity 3D imaging for thin specimens such as cells in

monolayer culture (Shaw, 2006). In some cases, we also used

confocal immunofluorescence microscopy for comparison.

The success of immunofluorescence often depends on condi-

tions like fixation and permeabilization, antibody binding, and

cell type (Katikireddy and O’Sullivan, 2011). To improve detec-

tion of nuclear proteins, we used protocols designed to facilitate

entry of antibody into the nucleus (Spector, 2011).

Our microscopy revealed a substantial amount of Ago2 in

the nucleus in addition to the expected distribution within the

cytoplasm. Images of slices through several micrometer thick

sections along the z axis, combined with 3D rendering of

composite focal sections, revealed Ago2 within the nuclear

compartment (Figure 1; Movie S1). The application of two addi-

tional antibodies against human Ago2 produced similar results

(Figures S1A–S1C), confirming that nuclear visualization was

not due to off-target immunoreactivity. We also observed Ago2

in the nuclei of T47D breast cancer cells and fibroblast cells

(Figures S1D–S1F), indicating that nuclear Ago2 is not cell type

specific. Confocal microscopy confirmed nuclear localization

of Ago2 (Figures S1G and S1H). We also used wide-field immu-

nofluorescence microscopy to test localization of Dicer, TRBP,

and TNRC6A and observed staining in the nucleus as well as in

the cytoplasm (Figures S1I–S1K). These results using different

microscopy platforms, cell lines, and detection reagents suggest

the nuclear presence of the protein machinery that enables

RNAi.

As a second method for testing nuclear localization, we

used cellular fractionation and western blot analysis to evaluate

the levels of Ago2 and other RNAi factors in the nucleus. We

developed a stepwise protocol for isolating cytoplasmic,

whole nuclear, nucleoplasmic (soluble nuclear), and chromatin-

associated fractions from the same cell population. Fractions

were used for various assays, including protein and RNA detec-

tion, chromatographic or biochemical fractionation, and enzy-

matic assays (Figure 2A).

RNAi factors can localize to the ER (Stalder et al., 2013). This

poses a challenge for accurate assessment of localization inside

of nuclei because the ERmembrane is contiguous with the outer

nuclear membrane (Hetzer, 2010). To ensure efficient removal of

ER protein contamination, we tested detergents and conditions

for preparation of nuclear extracts (Michelsen and von Hagen,

2009). Nuclei were washed with buffers containing different

detergents and then visualized by fluorescence microscopy

using DAPI and ER tracker, a fluorescent dye that binds the

sulphonylurea receptor class of ER integral membrane proteins.

Our microscopy indicated that the addition of 0.3% NP-40

was most efficient at removing ER contamination (Figure 2B).

Western blots confirmed the absence of both ER lumen and

ER membrane proteins from nuclear extracts (Figure 2C).

Western blot analysis of purified nuclei revealed endogenous

Ago2, Dicer, TRBP, and TRNC6A in the nuclei of multiple human

cell lines (Figure 2D). Protein markers for the cytoplasm, ER, and

mitochondria were absent from nuclear preparations, consistent

with stringent isolation of nuclei. Quantitation of western blots

revealed relative nuclear abundances ranging from 40% to



Figure 2. RNAi Factors Are Present in Nuclear Extracts

(A) Schematic of cellular fractionation protocol.

(B) Fluorescent imaging of intact HeLa nuclei after isolation with buffers con-

taining different detergents. ER membrane is stained yellow with ER Tracker

dye, DAPI staining of nuclei.

(C) Western blot analysis of cytoplasmic and nuclear fractions prepared with

buffers containing different detergents. Calreticulin is a marker for the ER

lumen. Calnexin is a marker for the ER membrane.

(D)Western blot of RNAi factors and subcellular markers from cytoplasmic and

nuclear fractions prepared with 0.3% NP-40. Oxphos is a marker for mitch-

odondria, Lamin A/C is a marker for nuclear matrix, and tubulin is a marker for

cytoplam.

C

50% (Figure 2E). We also observed the other human Ago vari-

ants, Ago1, Ago3, and Ago4, in our nuclear preparations (Fig-

ure S2). Combined with microscopy, our analysis of cell fractions

demonstrates that the basic machinery necessary to execute

RNAi is present in human cell nuclei.

Nuclear RNAi Factors Can Stably Associate in
Multiprotein Complexes
RNAi factors interact to form RISC and execute RNAi in the

cytoplasm (MacRae et al., 2008; Wilson and Doudna, 2013). To

determine whether nuclear RNAi factors also interact, we tested

coimmunoprecipitations of nuclear Ago2, Dicer, TNRC6A, and

TRBP. These coimmunoprecipitations revealed a network of in-

teractions between RNAi factors (Figure 3A).

To further support the observed association of RNAi factors

with Ago2 in nuclei, we generated T47D cells stably expressing

FLAG-HA-tagged Ago2 (FHA-Ago2). Immunoprecipitation of

FHA-Ago2 with FLAG antibody confirmed copurification of

Dicer, TNRC6A, and TRBP (Figure 3B). Coimmunoprecipitation

of Ago2 and Dicer or Ago2 and TNRC6A were also observed in

nuclear extracts treated with RNase A, indicating that the asso-

ciation of RNAi factors was independent of RNA (Figure 3C).

To visualize the association of TNRC6A and Ago2 inside of

cell nuclei, we performed immunofluorescence microscopy.

These experiments revealed colocalization of Ago2 and TNRC6A

staining within HeLa nuclei (Figures 3D and S3). Colocalization of

Ago2 and TNRC6A is consistent with the suggestion from our

coimmunoprecipitation results that nuclear RNAi factors can

form complexes.

To further characterize nuclear complexes containing RNAi

factors, we separated nuclear extracts by size and charge.

Fractionation by size-exclusion chromatography revealed high

molecular weight complexes containing all four RNAi factors

(Figure 3E). To test the involvement of RNA in complex formation,

we treated extracts with RNase A and observed that RNA was

not required. When high molecular weight fractions containing

RNAi factors were further separated by anion-exchange chro-

matography, RNAi factors continued to coelute (Figure 3F)

indicating that the complexes were sufficiently stable to survive

tandem purification schemes. Taken together, these results

demonstrate that nuclear RNAi factors can form stable multipro-

tein RISC-like complexes.

To compare nuclear and cytoplasmic RNAi protein com-

plexes, we performed similar size-exclusion chromatography

with cytoplasmic extract (Figure 3G). The retention time of

Ago2, Dicer, and TNRC6A was similar in cytoplasmic fractions

compared to the nuclear fraction. TRBP, however, eluted later

regardless of the presence or absence of RNase A. As an alter-

nate test for the stability of complexes containing RNAi factors,

we fractionated nuclear and cytoplasmic extracts by adding

increasing amounts of ammonium sulfate. Although all four

RNAi factors precipitated from nuclear extract at 20% ammo-

nium sulfate, a 40% concentration was required for precipitation

from cytoplasmic extract (Figure 3H). These results from
(E) Quantification of RNAi factors fromwestern blots of HeLa, T47D, fibroblast,

and A549 cells shown in (D). Error bar is ±SEM.
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Figure 3. RNAi Factors Associate in Multiprotein Complexes in the Nucleus

(A) Coimmunoprecipitation (coIP) of endogenous RNAi factor from HeLa nuclear extract. The antibodies used for the western blot detection are noted to the right,

whereas the antibodies used for immunoprecipitations are on top.

(B) CoIP of RNAi factors from T47D cells expressing FLAG-HA-tagged Ago2 (FHA-A2). HeLa nuclear extract serves as a negative control. Input is extract prior to

immunoprecipitation.

(C) CoIP of Ago2 with Dicer or TNRC6A from T47D nuclear extracts treated with RNase A.

(D) Immunofluorescence of Ago2 and TNRC6A in HeLa cells indicates overlap and colocalization of immunostaining. z stacks (3 mm thickness taken in 0.1 mm

slices) are projected in 3D. The colocalization channel was generated in Imaris (Bitplane). Scale bar represents 5 mm.

(E)Western analysis of fractions from separation of HeLa cell nuclear extract by size exclusion. Extracts were prepared either with our without treatment by RNase

A. Western blot antibodies are shown to the right. Sample fractions are below. Histone H3 is marker for high molecular weight chromatin.

(F) Western analysis of fractions after anion-exchange chromatography of nuclear extract Fraction C from Figure 5E. FT, column flowthrough.

(G) Western analysis of fractions HeLa cytoplasmic extract after size-exclusion chromatography. Extracts were prepared either with our without treatment with

RNase A.

(H) Effect of ammonium sulfate precipitation of RNAi factors from T47D nuclear or cytoplasmic extracts. Western blot antibodies are shown to the right and

ammonium sulfate concentrations (% saturation) are shown above.
fractionation by either chromatography or precipitation reveal

the formation of RISC-like complexes, but also suggest that

the exact composition of complexes in the nucleus and the

stability of their association differs from that observed in the

cytoplasm.

RNAi Is Active in the Nucleus
After demonstrating that RNAi factors were present in human

cell nuclei, we investigated whether they could also direct

silencing of nuclear RNA substrates. We examined the

silencing within cytoplasmic, nucleoplasmic, and chromatin-

associated cell fractions. Our target RNAs were Malat1 and

Neat1, long noncoding RNAs (lncRNAs) primarily associated

with chromatin (Figure 4A) (Dodd et al., 2013). For comparison,

we also targeted ribosomal protein L30 (RPL30) and peptidyl-

prolyl isomerase A (PPIA) mRNAs, which are primarily

cytoplasmic.
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We treated cells with siRNAs targeting each RNA transcript,

fractionated the cells, and then used quantitative PCR (qPCR)

tomeasure RNA levels. As typically observed with siRNAs, levels

of all four RNA transcripts were reduced in the cytoplasmic

fraction (Figure 4B).We observed a similar reduction of transcript

levels in nucleoplasmic and chromatin fractions, consistent with

RNAi activity in nuclei (Figure 4B).

Cleavage at a predicted location is a diagnostic for substrate

processing by Ago2. Therefore, we used 50 rapid amplification

of cDNA ends (50 RACE) to further test whether silencing of

RNA in the nucleoplasm and on chromatin was due to Ago2-

mediated cleavage.We isolated RACEproducts and sequencing

revealed that site-specific cleavage had occurred at the pre-

dicted phosphodiester bond in all cellular fractions for Malat1

(Figures 4C, S4A, and S4B). Identification of the predicted

RACE products associated with chromatin and in nucleoplasm

is additional evidence for nuclear RNAi activity.



Figure 4. RNAi Is Active in the Human Cell

Nucleus

(A) Quantification RNA distribution in HeLa sub-

cellular fractions by qPCR. Error bar is ±SEM.

(B) Quantification by qPCR of siRNA-mediated

lncRNA and mRNA knockdown in HeLa subcellu-

lar fractions. Error bar is ±SEM

(C) 50 RACE to detect siRNA-mediated Ago2

cleavage of Malat1 in chromatin-associated

RNA fractions. Arrow indicates specific cleavage

product.

(D) Cleavage of a 50-radiolabeled luciferase RNA

substrate by Ago2 isolated from cytoplasmic or

nuclear fractions. T1, RNase T1 cleavage; OH,

alkaline hydrolysis; (+) CTRL, synthetic cleavage

product. The region overlapped by the siRNA is

noted.

(E) FISH showing that Malat1 speckles in HeLa

cells are lost upon treatment with siMalat1 siRNA.

z stacks are 5 mm thickness. siLuc, mock treat-

ment. Scale bar represents 5 mm.
To further investigate the potential for nuclear Ago2 to cleave

RNA substrates, we set up an in vitro cleavage assay using Ago2

from either cytoplasmic or nuclear fractions and a radiolabeled

RNA substrate derived from luciferase (Luc) mRNA (Elbashir

et al., 2001). Cells were transfected with a duplex RNA (siLuc)

complementary to the Luc RNA substrate or a duplex RNA con-

taining two central mismatches (siLuc_mm). Central mismatches

are known to disrupt slicer activity (Wang et al., 2008). Ago2 was

then immunoprecipitated from either the cytoplasmic or nuclear

fractions and incubated with the radiolabeled target RNA sub-

strate. Reactions were then resolved on denaturing polyacryl-

amide gels to visualize cleavage products.

Ago2 immunoprecipitated from both cytoplasmic and nuclear

extracts of cells treated with siLuc caused sequence-specific
Cell Reports 6, 211–221
cleavage of the Luc substrate (Figure 4D,

lanes 6 and 9). In contrast, Ago2 from

cytoplasmic and nuclear extracts of cells

treated with siLuc_mm did not support

cleavage (Figure 4D, lanes 7 and 10).

A lack of cleavage for siLuc_mm is ex-

pected based on the known slicer mech-

anism of Ago2, which requires perfect

complementarity at the targeted bond

(Wang et al., 2008). These results demon-

strate sequence-specific slicer activity for

nuclear Ago2.

To visualize RNAi-mediated activity

inside cell nuclei, we targeted Malat1

RNA with a siRNA (siMalat1) and per-

formed fluorescence in situ hybridization

(FISH). FISH prior to siMalat1 treatment

revealed distinct nuclear speckles. Upon

treatment with siMalat1, the Malat1

speckles disappeared. In contrast to the

disappearance of speckles after treat-

ment with siMalat1, a siRNA with no

cellular target (siLuc) had no effect
(Figures 4E, S4C, and S4D). Taken together, several lines of

evidence are consistent with RNAi slicer activity in cell nuclei,

including (1) siRNA-mediated reduction in the levels of nuclear

RNA targets, (2) site-specific cleavage of nuclear RNA targets

at a position diagnostic for RNAi, (3) cleavage of target RNA by

Ago 2 isolated from nuclear extract, and (4) visualization of

reduced target RNA within cell nuclei.

miRNAs in Cell Nuclei
We evaluated the localization of miRNAs within cell nuclei and

their association with Ago2. Sequencing of small RNAs revealed

that out of 456 miRNA species identified in the whole cell, 346 of

them also exist in cell nuclei, suggesting that roughly 75% of

miRNAs in the cytoplasm are shuttled into the cell nucleus
, January 16, 2014 ª2014 The Authors 215



Figure 5. miRNAs Are in the Nucleus and Associate with Ago2

(A) Distribution of miRNAs by single molecule small RNA sequencing in nuclei versus whole cell.

(B and C) Relative abundance of top 20 miRNAs in whole-cell versus nuclear fractions.

(D) Top 20 miRNAs bound to nuclear Ago2 identified by immunoprecipitation and single molecule small RNA sequencing. Results are compared to a negative

control from immunoprecipitation using a nonspecific antibody (IgG).

(E) Detection of processing products from cytoplasmic and nuclear Dicer. RNAmolecular weight ladder is shown to the left (lane 1). Arrow indicates specific Dicer

processing product band.
(Figure 5A). The identities of many of the top 18 ranked miRNAs,

based on the number of obtained sequencing reads, were the

same between nuclei and whole cell (Figures 5B and 5C), indi-

cating a similar distribution of abundant miRNA species in the

cytoplasm and the nucleus.

We then examined the association of miRNAs with Ago2 in cell

nuclei. Ago2 was immunoprecipitated from nuclear extract using

a nonspecific mouse immunoglobulin G (IgG) as a negative

control. Bound small RNAs were isolated and sequenced on a

Helicos single molecule sequencer using direct RNA sequencing

mode. In this mode, the steps of making complementary DNA

and PCR amplification are avoided so that potential sequencing

biases are eliminated. The number of sequencing reads better

represents the original miRNA expression level. We prepared
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two biological replicates and averaged the sequencing read

number for each small RNA. Single molecule sequencing

revealed substantial binding of numerous miRNAs to nuclear

Ago2 (Figure 5D).

To further examine the potential for miRNA pathways to

operate in the nucleus, we tested the ability of Dicer, the enzyme

that processes pre-miRNA precursors, to generate mature

miRNAs in nuclear or cytoplasmic extracts. We performed an

in vitro processing assay in which we immunoprecipitated Dicer

from cytoplasmic or nuclear extracts, mixed it with radiolabeled

pre-miR-19a, and analyzed cleavage products by denaturing

polyacrylamide gel electrophoresis. We observed the expected

23 nucleotide product for both nuclear- and cytoplasmic-derived

Dicer (Figure 5E). These results suggest that Dicer can process



Figure 6. Duplex Small RNA Loading Is Deficient and RISC Loading Factors Are Absent in Nuclear Extracts

(A) Cleavage of a 50-radiolabeled luciferase RNA substrate by Ago2 isolated from cytoplasmic or nuclear fractions treated as shown above the gel. T1, RNase T1

cleavage; OH, alkaline hydrolysis; (+) CTRL, synthetic cleavage product.

(B) Coprecipitation of radiolabeled duplex siLuc or radiolabeled single-strand siLuc guide RNA incubated with Ago2 after immunoprecipitation from nuclear or

cytoplasmic extracts.

(C and D) In vitro assay for Ago2 duplex siRNA loading in extracts. Radiolabeled siRNA is added to extracts from human cell lines, Ago2 immunoprecipitated with

Ago2 or FLAG antibody, and copurified RNA resolved on a denaturing polyacrylamide gel. FHA-A2-c1 and FHA-A2-c3 are two different T47D clonal cell lines

stably expressing FLAG-HA-tagged Ago2.

(E) Radiolabeled siLuc was used in the same assay shown in (C) and (D), but copurified RNA was resolved on a nondenaturing polyacrylamide gel. Immuno-

precipitation wash conditions and shown below the gel and the copurified duplex or single-strand RNAs indicated to the right.

(F) Radiolabeled miR-19a or siLuc were used in the same assay shown in (C) and (D). Mismatch positions relative to the 50 end of the guide strand are indicated

above the gel.

(G) Western blot of RISC loading and maturation factors and subcellular markers from cytoplasmic and nuclear fractions.
pre-miRNAs in the nucleus and is consistent with the potential

for nuclear regulation and production of small RNAs.

Small Duplex RNA Loading of Ago2 Is Deficient in
Nuclear Extract
Observed differences in fractionation of nuclear versus cyto-

plasmic RNAi factor complexes (Figure 3) suggested that other

differences between cytoplasmic and nuclear RISC might exist.

To extend our analysis, we tested whether there might be differ-

ences in small RNA loading between the nucleus and cytoplasm.

When examining Ago2 slicer activity in vitro (Figure 4D), our ex-

tracts were initially prepared from cells that were transfected with

siRNA. This protocol requires the RNA to pass through the cyto-

plasm before entering the nucleus, and therefore loading might

occur in the cytoplasm. Subsequent nuclear import of loaded

Ago2 complexes might then account for the slicer activity
C

observed in the nucleus (Ohrt et al., 2008; Weinmann et al.,

2009). To determine where loading was occurring, we added

small RNAs directly to nuclear extracts prepared from untreated

cells andsubsequently performed in vitroassays for slicer activity.

As we had observed previously, when Ago2 is isolated from

extracts of cells transfected with siLuc, Ago2 from both the

cytoplasm and nucleus can catalyze cleavage of the Luc

substrate RNA (Figure 6A, lanes 8 and 12). By contrast, extracts

fromuntransfectedcellswheredouble-strandedsiLucwasadded

after extractpreparation revealed that cytoplasmicAgo2wasable

tocatalyzecleavagebut thatnuclearAgo2was inactive (Figure6A,

lanes 6 and 10). These data are consistent with nuclear slicer

activity and replicateourprevious findings (Figure 4), but alsosug-

gest a deficiency in Ago2 loading in nuclear extracts.

We further examined the loading of single-stranded guide

RNA alone. Single-stranded RNAs are usually rapidly degraded
ell Reports 6, 211–221, January 16, 2014 ª2014 The Authors 217



in cell extracts, precluding efficient loading. Nevertheless we

found that addition of the single-stranded siLuc guide strand

conferred low but similar levels of cleavage for both cytoplasmic

and nuclear Ago2 (Figure 6A, lanes 7 and 11).

RNA single strands can be directly bound by Ago2 without

the need for additional factors (Rivas et al., 2005). As a control

to ensure that nuclear Ago2 was accessible for loading, we

immunoprecipitated Ago2 and then incubated it with a radio-

labeled single-strand siLuc guide RNA. We found that both

cytoplasmic and nuclear Ago2 were able to bind the single-

stranded guide (Figures 6B and S5A). Taken together, our

observations that Ago2 from nuclear extract can (1) direct

cleavage of an RNA target after mixing with single-stranded

but not duplex RNA and (2) bind single-strand RNA are

consistent with the loading of duplex RNA being deficient in

cell nuclei.

Because duplex RNAs are susceptible to degradation by

nucleases (Braasch et al., 2003), we considered the possibility

that nuclear extracts could harbor a nuclease activity that might

interfere with loading. When duplex RNA was incubated with

either nuclear or cytoplasmic extracts, we observed similar

levels of degradation over time (Figure S5B), suggesting that

nuclease activity cannot explain our findings.

To more directly investigate Ago2 loading with duplex

small RNA, we developed an in vitro loading assay. We added

duplex siLuc with a radiolabeled guide strand to either nuclear

or cytoplasmic extracts. When Ago2 was immunoprecipitated

with antibodies against either endogenous or FLAG-tagged

Ago2, we observed copurification of radiolabeled siLuc guide

strand with cytoplasmic, but not nuclear, Ago2 (Figures 6C and

6D). A lack of nuclear loading was still observed when both siLuc

strands were radiolabeled, ruling out a potential passenger

strand loading bias in the nucleus (Figure S5C). We also

confirmed that similar amounts of Ago2 were immunoprecipi-

tated from both extracts in our experiments (Figure S5D).

Nuclear extracts are unlikely to support efficient ATP regenera-

tion for some RNAi processes (Klouwen and Appelman, 1967;

Zamore et al., 2000). Because RISC loading has been reported

to require ATP (Iwasaki et al., 2010), we used phosphocreatine

and creatine kinase (Calhoun and Swartz, 2007) to regenerate

ATP. We observed no change in loading in the nuclear extract

(Figure S5E), excluding insufficient ATP as a possible explana-

tion for the duplex loading deficiency.

Small duplex RNA loading involves an initial step when

the duplex first binds to RISC and an unwinding step when the

passenger strand is removed (Iwasaki et al., 2010; Matranga

et al., 2005; Ye et al., 2011). To determine the limiting step in

nuclear loading, we performed the in vitro Ago2 loading

assay under conditions that would discriminate between duplex

siRNA or single-strand guide RNA bound to Ago2. Immuno-

precipitations were washed with the standard high-salt (0.5 M

NaCl) buffer or with a low-salt (0.15 M NaCl) buffer to potentially

preserve formation of unstable Ago2-RNA complexes. When

RNA isolated from Ago2 immunoprecipitations was resolved

by native gel electrophoresis, both duplex and single-stranded

RNAs were bound to cytoplasmic Ago2, indicating formation

of both complexes during loading (Figure 6E). In contrast,

neither complex was formed during loading in nuclear extracts.
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This result demonstrates that the initial step of duplex RNA

loading is deficient in nuclear extracts.

Our observation of miRNAs and Dicer activity in cell nuclei

(Figure 5) led us to examine loading of miRNAs. We tested

loading of a miR-19a duplex miRNA and duplex RNAs based

on siLuc that contained central or terminal mismatches. Like fully

complementary RNAs, we observed that mismatched duplexes

were loaded in cytoplasmic extract but were not loaded in

nuclear extract (Figure 6F). These results suggest that duplex

miRNAs may also be differentially loaded between the nucleus

and the cytoplasm.

Because several proteins are implicated in Ago2 loading and

RISC maturation (Iwasaki et al., 2010; Pare et al., 2013; Ye

et al., 2011), we performed western blot to detect their presence

in isolated nuclei. Surprisingly, these loading factors, Hsp90,

Translin, TRAX, Aha1, FKBP4, Cdc37 and p23, were all exclu-

sively cytoplasmic (Figure 6G). The only exception was Hsc70,

which was found in both the nucleus and the cytoplasm. These

results are consistent with a loading restriction to the cytoplasm

and suggest that programming of RNAi via Ago loading is regu-

lated by exclusion of critical loading factors from the nucleus.

DISCUSSION

There has been conflicting evidence over the presence and

activity of canonical RNAi factors in mammalian somatic cell

nuclei. The biological significance of the nucleus in the regulation

of RNAi pathways has also been unclear. This uncertainty has

obscured the potential for small RNAs to participate in the regu-

lation of nuclear processes. In this study, we used multiple

methods to test whether RNAi factors and RNAi activity could

be detected in mammalian cell nuclei. We employed protocols

for purifying nuclei that are free of ER protein contamination for

in vitro analyses and methods for visualizing RNAi factors and

RNAi activity in cell nuclei.

Our complementary experimental approaches support the

existence of nuclear RNAi but also indicate that it differs from

cytoplasmic RNAi. We find that (1) Ago2, the catalytic engine

of RNAi, and the RNAi factors Dicer, TRBP, and TNRC6A are

all present in human cell nuclei; (2) these nuclear-localized

RNAi factors can associate in stable multiprotein complexes;

(3) small RNAs can reduce levels of nuclear-localized RNA tar-

gets through site-specific cleavage; (4) Ago2 and Dicer isolated

from nuclei exhibit catalytic activity; (5) the effects of RNAi activ-

ity can be visualized inside of human cell nuclei by FISH; (6)

endogenous miRNAs are bound to nuclear Ago2 and miRNA

pathway components are in the nucleus; (7) programming of

RNAi through Ago2 loading with duplex small RNAs is not

observed in nuclear extracts; and (8) necessary RISC loading

and maturation factors are absent from the nucleus.

A previous study from Meister and colleagues reported on

the presence and complex formation of EGFP-tagged Ago2 in

human cell nuclei using fluorescence correlation and cross-

correlation spectroscopy (Ohrt et al., 2008). Consistent with their

results, we also observed Ago2 in the nucleus. However, they

found that nuclear EGFP-Ago2 did not appear to associate

with large complexes. These differences may be accounted for

by our focus on endogenous Ago2 and by variations in



fractionation techniques. Based on spectroscopy data, Ohrt

et al. (2008) also proposed that Ago2 is loaded in the cytoplasm

and imported into the nucleus. Our data support this hypothesis

with biochemical evidence and provide a potential explanation

by observing a nuclear absence of the known RISC loading fac-

tors. The exclusion of RNAi programming from the nucleus has

important implications for RNAi because small RNAs that are pri-

marily nuclear may be loaded inefficiently or not at all. This par-

titioning of RISC loading may have evolved to regulate the

involvement of nuclear small RNA in RNAi-mediated processes.

The activity and regulation of RNAi factors in mammalian cell

nuclei might have multiple impacts on gene regulation. Small

RNAs could potentially guide RNAi factors like Argonaute to

nuclear RNA species, such as noncoding RNAs at gene pro-

moters to affect transcription or intronic RNA to alter splicing.

Nuclear RNAi-like pathways exist in various eukaryotic organ-

isms like plants, flies, worms, fungi, and ciliated protozoa (Castel

and Martienssen, 2013; Gagnon and Corey, 2012). These path-

ways have been characterized to regulate processes like nuclear

gene expression, epigenetic states, and genome maintenance

(Malone and Hannon, 2009). The demonstrated presence and

activity of canonical RNAi factors in mammalian cell nuclei sug-

gest that similar pathways may exist in humans.

We have recently reported a role for Ago2 and TNRC6A in

endogenous control of the inflammatory pathway genes cyclo-

oxygenase 2 (COX-2) and phospholipase 2G 4A (PLA2G4A)

by miR-589 miRNA (Matsui et al., 2013). COX-2 and PLA2G4A

are adjacent geneswhose promoters are linked by chromosomal

looping. miR-589 is expressed in A549 lung cancer cells and has

two seed sequence target sites at the COX-2 promoter. Elevated

levels of miR-589 lead to increased expression of both COX-2

and PLA2G4A. Ago2 and TNRC6A are recruited by miR-589 to

a sense transcript that overlaps the COX-2 promoter. When

Ago2 or TNRC6A levels are depleted, the activation of COX-2

and PLA2G4A by miR-589 is reversed. These results provide

an experimental demonstration that nuclear RNAi factors can

play a role in regulating a physiologically important regulatory

pathway.

Mammalian RNAi has typically been assumed to localize to the

cytoplasm, limiting the vision of researchers investigating the

regulation of gene expression. Clarity about RNAi factors and

their activity in the nucleus widens investigation of RNAi beyond

traditional targets in the cytoplasm to targets in the nucleus that

may regulate processes like transcription or splicing. Although

much remains to be learned about nuclear RNAi, such control

in the nucleus would add a new layer of gene regulation and offer

new options for RNAi-based therapeutics.

EXPERIMENTAL PROCEDURES

Tissue Culture and siRNA Transfection

HeLa, T47D, fibroblast, and A549 cells were cultured in their standardmedia at

37�C in 5% CO2. Lipofectamine RNAiMAX (Invitrogen) was used to deliver

siRNAs into cells following the manufacturer’s recommended protocol.

Sequences of siRNAs used are listed in Table S1.

Nuclear and Cytoplasmic Cell Fractions

Cells were lysed in hypotonic lysis buffer (HLB) (10 mM Tris-HCl [pH 7.5],

10 mM NaCl, 3 mM MgCl2, 0.3% NP-40) supplemented with 1% Protease In-
C

hibitor (PI), 1 mM NaF, and 1 mM Na3VO4. Cells were spun and supernatant

kept as cytoplasmic extract after addition of NaCl to 0.15 M and glycerol to

10%. Pelleted nuclei were washed three times with HLB. To make nuclear

extract, nuclei were resuspended in nuclear lysis buffer (same as HLB but con-

taining 0.15 M NaCl and 10% glycerol) also supplemented with PI, NaF, and

Na3VO4. Nuclei were sonicated and supernatant kept as nuclear extract.

Coimmunoprecipitation

Protein G Plus/Protein A resin (Calbiochem), antibody and precleared nuclear

extract were mixed at 4�C for 2–3 hr. When indicated, 20 mg RNase A was

added before incubation. Resin was washed with IP wash buffer (20 mM

Tris-HCl [pH 7.5], 0.4 M NaCl, 2 mM MgCl2, 0.05% NP-40, 0.025% SDS)

and copurified proteins eluted with SDS-PAGE loading buffer. Specific pro-

teins were detected by western blot.

Chromatographic Separation and Ammonium Sulfate Cuts of Cell

Extracts

For size-exclusion chromatography, extracts were either treated with RNase A

or SUPERase-In (Ambion), filtered, injected onto a Superdex 200HiLoad 16/60

column (Amersham Pharmacia) preequilibrated with FPLC buffer (20 mM Tris-

HCl [pH 7.5], 150 mM NaCl, 3 mM MgCl2, 5% glycerol), and separated by

FPLC. Eluted fractions were assayed by western blot. For subsequent frac-

tionation by anion exchange, size-exclusion fractions were concentrated

and injected onto a Mono-Q FPLC column (Amersham Pharmacia) equili-

brated with FPLC buffer at 0.1 M NaCl. Elution was performed by linear

gradient from 0.1 to 1 M NaCl. For ammonium sulfate precipitation, saturated

ammonium sulfate solution was added to cell extracts at the indicated final

percentages, incubated on ice for 15 min, spun down at 18,000 3 g at room

temperature, and pelleted precipitate resuspended in SDS loading buffer. Su-

pernatant was kept and additional ammonium sulfate added for the next cut.

Fractions were analyzed by western blot.

Analysis of siRNA-Mediated RNA Knockdown in Cellular

Compartments

HeLa cells were transfected with 25 nM siRNA and then harvested 72 hr later.

Cells were counted and fractionated similarly to above. However, instead of

sonicating, nuclei were lysed with modified Wuarin-Schibler buffer (MWS)

(10 mM Tris-HCl [pH 7.0], 4 mM EDTA, 0.3 M NaCl, 1 M urea, 1% NP-40)

(Wuarin and Schibler, 1994). Supernatant was kept as nucleoplasmic fraction

and chromatin washed. RNA was isolated from cytoplasmic and nucleo-

plasmic fractions by precipitation and Trizol extraction. RNA was isolated

from chromatin by Trizol extraction.

In Vitro Ago2 Cleavage Assay

HeLa cells were either untreated or transfected with 25 nM siLuc or siLuc_mm

(see Table S1) and then harvested 36 hr later, and nuclear and cytoplasmic

extracts were prepared. When indicated, siRNA or single-strand guide RNA

was incubated with extract from untreated cells for 1 hr at room temperature

with rotation. Ago2 was immunoprecipitated using Ago2 antibody (Abcam,

ab57113), Protein G Plus/Protein A agarose (Calbiochem), and 200 ml extract

at room temperature rotation for 1 hr. Resin was washed with IP wash buffer

(IPWB) (20 mM Tris-HCl [pH 7.5], 4 mM MgCl2, 0.5 M NaCl, 0.05% NP-40)

and then mixed with 50 radiolabeled synthetic target RNA substrate in 1 3

RNAi buffer (20 mM Tris-HCl [pH 7.5], 4 mM MgCl2, 0.5 mM DTT, 80 mM

NaCl, 20 mM KCl, 0.5 mM EDTA) supplemented with 1 mg/ml yeast tRNA,

20 units SUPERase-In (Ambion), and 0.5 mM ATP. Reactions were incubated

at 30�C for 1.5 hr with periodic mixing, and then target RNA and cleavage

products were phenol extracted. Extracted RNAwas resolved on a 15%dena-

turing polyacrylamide sequencing gel. The gel was dried and exposed to a

phosphorimager screen overnight to visualize radioactive bands.

Immunofluorescence and Colocalization Analysis

Immunofluorescence was performed similarly to that previously described

(Ohrt et al., 2012; Spector, 2011) with modifications. Briefly, cells were grown

on 35 mm dishes with a 14 mm glass bottom. Cells were fixed in 2% formal-

dehyde or 4% paraformaldehyde. Fixed cells were then permeabilized with

0.2% Triton X-100 or 70% ethanol. Cells were incubated in primary antibody
ell Reports 6, 211–221, January 16, 2014 ª2014 The Authors 219



in PBS + 1% normal goat serum (NGS), washed, incubated with secondary

antibody + 1% NGS, washed again, and then set in mounting medium with

DAPI and imaged. Cells were imaged by wide-field epifluorescence micro-

scopy and images processed by blind deconvolution with AutoQuant X3

(Media Cybernetics). Alternatively, some samples were imaged by Andor

spin disc confocal microscopy. Colocalization channels were calculated using

Imaris (Bitplane) based on the correlation of the strength of linear relation

between the two channels. Threshold levels for calculation were selected

above background.

Fluorescence in Situ Hybridization

Cells were grown on 35 mm MatTek dishes and transfected with 25 nM siLuc

or siMalat1 as described above. Cells were fixed in ice-cold 4% PFA and per-

meabilized in 70%. From this point forward, the protocol recommended by the

manufacturer of the FISH probes for Malat-1 (Biosearch Technologies, New

Stellaris RNA FISH Probe for Malat-1, SMF-2035-1) was followed. Cells

were set with mounting medium with DAPI and imaged as above for IF.

Small RNA Sequencing

Small RNA sequencing libraries were constructed from either whole-cell RNAs

or nuclear RNAs isolated from T47D cells and sequenced on Illumina Hiseq

2000. The reads were aligned to human genome hg19, UCSC miRNA data-

base, and/or miRBase (mature miRNA).

Ago2-associated miRNA in cell nucleus was isolated by RNA immunopre-

cipitation using a specific Ago2 antibody. Small RNA (<40 nt) including miRNA

was further isolated by gel purification. The small RNA was then subjected to

poly(A) tailing and sequenced on a single-molecule Helicos sequencer with a

Direct RNA Sequencing (DRS) module.

In Vitro Ago2 Small RNA Loading Assay

Duplex siRNA or single-strand guide RNA radiolabeled at the 50 end was incu-

bated with extract supplemented with 1 mM ATP for 1 hr at room temperature

with rotation. Ago2 was immunoprecipitated using Ago2 antibody (Abcam,

ab57113) and Protein G Plus/Protein A agarose (Calbiochem). Resin was

washed with IP wash buffer (IPWB) (20 mM Tris-HCl [pH 7.5], 4 mM MgCl2,

0.5 M NaCl, 0.05% NP-40) and then phenol-chloroform extract to isolate

copurified RNA. Extracted RNA was resolved on a 15% denaturing polyacryl-

amide sequencing gel or a 15% native TBE-buffered polyacrylamide gel. The

gel was dried and exposed to a phosphorimager screen overnight to visualize

radioactive bands.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, one table, and one movie and can be found with this article online
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Rüdel, S., Flatley, A., Weinmann, L., Kremmer, E., and Meister, G. (2008). A

multifunctional human Argonaute2-specific monoclonal antibody. RNA 14,

1244–1253.

Shaw, P.J. (2006). Comparison of widefield/deconvolution and confocal

microscopy for three-dimensional imaging. In Handbook of Biological

Confocal Microscopy, J.B. Pawley, ed. (New York: Springer), pp. 453–467.

Spector, D.L. (2011). Immunofluorescence localization of nuclear proteins.

Cold Spring Harb. Protoc. 2011, 1276–1280.

Stalder, L., Heusermann, W., Sokol, L., Trojer, D., Wirz, J., Hean, J., Fritzsche,

A., Aeschimann, F., Pfanzagl, V., Basselet, P., et al. (2013). The rough endo-

plasmatic reticulum is a central nucleation site of siRNA-mediated RNA

silencing. EMBO J. 32, 1115–1127.

Till, S., Lejeune, E., Thermann, R., Bortfeld, M., Hothorn, M., Enderle, D.,

Heinrich, C., Hentze, M.W., and Ladurner, A.G. (2007). A conserved motif in

Argonaute-interacting proteins mediates functional interactions through the

Argonaute PIWI domain. Nat. Struct. Mol. Biol. 14, 897–903.

Valencia-Sanchez,M.A., Liu, J., Hannon, G.J., and Parker, R. (2006). Control of

translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20,

515–524.

Vickers, T.A., Koo, S., Bennett, C.F., Crooke, S.T., Dean, N.M., and Baker, B.F.

(2003). Efficient reduction of target RNAs by small interfering RNA and RNase

H-dependent antisense agents. A comparative analysis. J. Biol. Chem. 278,

7108–7118.

Wang, Y., Juranek, S., Li, H., Sheng, G., Tuschl, T., and Patel, D.J. (2008).

Structure of an argonaute silencing complex with a seed-containing guide

DNA and target RNA duplex. Nature 456, 921–926.
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Tissue culture and siRNA transfection 

HeLa cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 

5% fetal bovine serum (FBS) and 0.5% non-essential amino acids (NEAA). T47D cells 

(ATCC) were cultured in RPMI medium supplemented with 10% FBS, 0.5% NEAA, 20 µg/mL 

insulin, 10 mM pH 7.0-7.6 HEPES, and 1 mM sodium pyruvate.  Fibroblast cells (Coriell 

Institute, GM04281) were cultured in minimum essential medium (MEM) supplemented with 

10% FBS and 0.5% NEAA. A549 cells (ATCC) were cultured in F-12K medium supplemented 

with 10% FBS. T47D cells stably expressing FLAG-HA-tagged Ago2 were cultured identically 

to T47D cells but media supplemented with 0.2 mg/mL G418. All cells were grown at 37°C in 

5% CO2.   

Lipofectamine RNAiMAX (Invitrogen) was used to deliver siRNAs into HeLa cells 

following the manufacturer's recommended protocol in OptiMEM low serum medium 

(Invitrogen). Growth media was changed to full medium after 24 h. Transfected cells were 

harvested 72 h after transfection for qPCR and RACE analyses, 36 h after transfection for in 

vitro Ago2 cleavage assays, and 48 h after transfection for FISH analysis. Sequences of 

siRNAs used are listed in Table S1. 

 

Nuclear and cytoplasmic cell fractions 

Cells were harvested with trypsin-EDTA solution (Invitrogen), washed with PBS then 

resuspended in ice-cold hypotonic lysis buffer (HLB) (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 

3 mM MgCl2, 0.3% NP-40) supplemented with 1% Protease Inhibitor Cocktail Set I 

(Calbiochem), 1 mM sodium fluoride and 1 mM sodium orthovanadate at a final of 1 mL/75 

mg wet cell pellet. After incubation on ice for 15 min and gentle pipetting, lysate was spun at 



4°C at 800xg for 5 min. The supernatant was kept as cytoplasmic extract and NaCl and 

glycerol were added to a final of 140 mM and 10%, respectively. Pelleted nuclei were washed 

3x with ice-cold HLB by 5 min incubation on ice, pipetting and vortexing, then spinning at 4°C 

at 100-200xg for 2 min. For nuclear extracts, nuclei were resuspended in ice-cold nuclear 

lysis buffer (NLB) (20 mM Tris-HCl, pH 7.5, 0.15 M NaCl, 3 mM MgCl2, 0.3% NP-40, 10% 

glycerol) supplemented with 1% Protease Inhibitor Cocktail Set I, 1 mM sodium fluoride and 1 

mM sodium orthovanadate at a final of 0.5 mL/75 mg of original wet cell pellet weight (1/2 the 

volume of cytoplasmic fraction). Nuclei were sonicated on ice at 20% power 3x for 15 sec in 4 

mL volumes. After high speed centrifugation at 4°C for 15 min to remove insoluble cell debris, 

the soluble fraction was kept as nuclear extract.  All extracts were aliquoted, flash-frozen in 

liquid nitrogen, then stored at -80°C for later use.  Prior to use, extracts were spun again or 

filtered through 0.45 µm filter units.  

 

Optimization of nuclei isolation protocol 

A protocol similar to the above described for nuclear and cytoplasmic fraction preparation 

was followed except detergent was either omitted or TWEEN-20, NP-40 or Triton X-100 non-

ionic detergents were included in HLB at the indicated concentrations. After the final nuclei 

wash, a fraction of the nuclei were aliquoted for visualization by fluorescence microscopy 

while the remaining nuclei were resuspended in NLB and sonicated to prepare nuclear 

extracts as described above. Nuclei were prepared for microscopy by washing 1x in ice-cold 

PBS then incubating in PBS + 1 µM ER Tracker Red (Invitrogen) for 20 min on ice. Nuclei 

were washed in ice-cold PBS then diluted 10-fold in ice-cold PBS + 4% paraformaldahyde 

and incubated on ice 10 min. Nuclei were resuspended by pipetting and spotted on  glass 

slides. After partial air-drying, one drop of Vectashield Hard Set Mounting Medium with DAPI 



(Vector Laboratories, H-1500) was added, a coverslip added and mounting media allowed to 

harden at room temperature for 15 min.  

Nuclei were visualized with a 60x objective lens and DAPI and TRITC filters on a wide-

field epifluorescence Deltavision microscope. Z-sections were taken at 0.15 µm thickness. 

Images were deconvoluted by blind deconvolution using AutoQuant X3 (Media Cybernetics), 

stacked and ER tracker staining pseudo-colored yellow in ImageJ for visualization.     

 

Western blot analysis 

Cell extracts were prepared as described above. For comparing nuclear and cytoplasmic 

fractions by Western blot, the same cell equivalents of extract were separated by 

electrophoresis (1/2 the volume of nuclear extract for every 1 volume of cytoplasmic). In 

general, loading equal amounts of total protein is unsatisfactory for comparing the nuclear 

and cytoplasmic levels of specific proteins since there is approximately 4-fold more total 

protein in cytoplasmic extracts. Protein was separated on 4-20% gradient SDS-PAGE TGX 

pre-cast gels (Biorad) at 100 V for 75 min. After gel electrophoresis, proteins were transferred 

to nitrocellulose membrane (Hybond-C Extra, GE Healthcare Life Sciences) at 100 V for 90 

min. Membranes were blocked for 30 min at room temperature with 5% milk protein in PBS + 

0.05% TWEEN-20 (PBST).  

Blocked membranes were incubated with the following specific primary antibodies for 

16 h at 4°C in PBST + 5% milk with rocking: anti-Ago2 at 1:1000 (Abcam, ab57113), anti-

TNRC6A at 1:4000 (Bethyl Laboratories, A302-329A) or anti-TNRC6A at 1:3000 (kind gift 

from Edward Chan, Univ. Florida, rb5182), anti-Dicer at 1:1000 (Abcam, ab14601), anti-

TRBP at 1:1000 (Abcam, ab72110) or anti-TRBP at 1:3000 (kind gift from Qinghua Liu lab); 

anti-Calreticulin at 1:1500 (Cell Signaling, 2891S), anti-Calnexin at 1:1500 (Cell Signaling, 



2433S), anti-Histone H3 at 1:10000 (Abcam, ab1791), anti-Lamin A/C at 1:1500 (Abcam, 

ab8984), anti-OxPhos at 1:1000 (Invitrogen, A21351), anti-tubulin at 1:6000 (Sigma-Aldrich, 

T5201), anti-Ago1 at 1:1000 (Wako Chemical, 015-22411), anti-Ago3 at 1:500 (Active Motif, 

39788); anti-Ago4 at 1:500 (Active Motif, 39856), anti-PACT at 1:1000 (Abcam, ab75749), 

anti-Hsp90 at 1:500 (Enzo Life Sci., ADI-SPA-830-D), anti-Hsc70 at 1:500 (Enzo Life Sci., 

ADI-SPA-810-D), anti-Aha1 at 1:1000 (Abcam, ab56721), anti-FKBP4 at 1:50000 (Abcam, 

ab124906), anti-Cdc37 at 1:50000 (Abcam, ab108305), anti-p23 at 1:1000 (Abcam, ab2814).  

After primary antibody incubation, membranes were washed 3x for 5 min at room 

temperature with PBST then incubated for 30-45 min at room temperature with HRP-

conjugated anti-mouse at 1:10000 (Jackson Laboratories, 715-035-150) or anti-rabbit at 

1:5000 (Jackson Laboratories, 711-035-152) in PBST + 5% milk. Membranes were washed 

again 3x for 15 min in PBST at room temperature, then protein bands visualized using 

SuperSignal West Pico Chemiluminescent  Substrate (Thermo Scientific). For quantification 

of RNAi factor protein levels from Western blots of cellular fractions, films were scanned and 

bands quantified using ImageJ.   

 

Co-immunoprecipitation 

Co-immunoprecipitation experiments were performed by mixing 40 µl of Protein G 

Plus/Protein A resin (Calbiochem), 2 µg of antibody and nuclear extract (~0.5-1 mg total 

protein, precleared at 4°C for 30 min using ~15 µL Protein G Plus/Protein A resin and ~0.3 µg 

of corresponding IgG) and rotating at 4°C for 2-3 h.  Resin was washed 4x with IP wash 

buffer (20 mM Tris-HCl, pH 7.5, 0.4 M NaCl, 2 mM MgCl2, 0.05% NP-40, 0.025% SDS) and 

co-purified proteins eluted by boiling resin in 25 µl 1x SDS loading buffer.  Eluted protein was 

resolved by SDS-PAGE and proteins detected by Western blot as described above. When 



indicated, 20 µg of RNase A was added before incubation. For FLAG-tagged Ago2 co-

immunoprecipitation, about 20 µL ANTI-FLAG-M2 affinity gel (Sigma) and nuclear extract 

from T47D cells stably expressing FLAG-HA-tagged Ago2 (~0.5-1 mg total protein) were 

rotated at 4°C for ~1.5-2.5 h, followed by washing and elution as described above.  

 

Chromatographic and ammonium sulfate fractionation of cell extracts 

Nuclear extracts were prepared as described above but concentrated 2-fold by using 1/2 the 

standard amount of NLB during nuclei resuspension and sonication. For size-exclusion 

chromatography, 2 mL of nuclear extract was either treated with 50 µg of RNase A or 200 

units of SUPERase-In (Ambion) for 1 h at room temperature. Samples were then spun down 

at high speed and 0.45 µm filtered and injected onto a Superdex 200 HiLoad 16/60 FPLC 

column (Amersham Pharmacia) that was pre-equilibrated with FPLC buffer (20 mM Tris-HCl, 

pH 7.5, 150 mM NaCl, 3 mM MgCl2, 5% glycerol). Protein was eluted off the column with 

FPLC buffer and the elution collected in fractions at 4°C that were then snap-frozen in liquid 

nitrogen and stored at -80°C. Western blot analysis of fractions was performed as described 

above. For subsequent tandem fractionation by anion exchange, size-exclusion fractions 

were concentrated 3-fold and diluted to 0.1 M NaCl and injected onto a Mono-Q FPLC 

column (Amersham Pharmacia) equilibrated with FPLC buffer at 0.1 M NaCl. Elution was 

performed at room temperature with a linear gradient from 0.1 to 1 M NaCl in FPLC buffer. 

Fractions were collected and snap-frozen in liquid nitrogen.  Western blot analysis was 

performed as described above.   

 Ammonium sulfate cuts were performed by addition of saturated ammonium sulfate 

solution to the extract up to the indicated final percentage and incubated on ice for 15 min. 

Precipitated protein was pelleted by centrifugation at 18,000xg for 20 min at 4°C. Supernatant 



was kept and additional ammonium sulfate added up to the next indicated percentage and 

incubation and centrifugation repeated. Precipitated protein pellets were resuspended in 

identical volumes of SDS loading buffer, resolved by SDS-PAGE and probed by Western blot 

as described above.  

 

Analysis of siRNA-mediated RNA knock-down in cellular compartments  

HeLa cells were transfected in quadruplicate with 25 nM siRNA then harvested 72 h later with 

trypsin-EDTA solution. Cells were washed with PBS then counted with a hemocytometer.  

Five million cells were aliquoted and resuspended in 380 µL of ice-cold hypotonic lysis bufer 

(HLB) (10 mM Tris, pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.3% NP-40) and incubated on ice for 

15 min.  Lysate was pipetted and spun at 500xg at 4°C for 5 min. Supernatant was kept as 

cytoplasmic fraction, 40 µL of 3 M sodium acetate, pH 5.5, added, 100% ethanol added up to 

70%, and precipitated at -20°C overnight.  

Pelleted nuclei were washed 3x with ice-cold HLB and pipetting and vortexing then 

resuspended in 380 µL of ice-cold modified Wuarin-Schibler buffer (MWS) (10 mM Tris-HCl, 

pH 7.0, 4 mM EDTA, 0.3 M NaCl, 1 M urea, 1% NP-40) (Wuarin and Schibler, 1994). Sample 

was incubated on ice for 30 min. with vortexing every 10 min., then spun at 500xg at 4°C for 

5 min. Supernatant was kept as nucleoplasmic fraction, 40 µL of 3 M sodium acetate, pH 5.5, 

added, 100% ethanol added up to 70%, and precipitated at -20°C overnight.  

Pelleted chromatin was washed 3x with ice-cold MWS then 1 mL Trizol (Invitrogen) 

was added to the final chromatin pellet. To process cytoplasmic and nucleoplasmic fractions, 

precipitates were pelleted at 18000xg for 15 min at 4°C then 1 mL Trizol added to each pellet. 

Samples in Trizol were heated to 70°C with vortexing until completely dissolved (5-10 min), 

then cooled to room temperature. To each sample 0.2 mL chloroform:isoamyl alcohol (24:1) 



was added, samples vortexed, then spun at 18000xg for 10 min.  The top aqueous layer was 

collected and RNA precipitated by addition of 1 volume of isopropanol and incubation at -

20°C overnight. RNA was pelleted by spinning at 18000xg, washed with 70% ethanol, then 

air dried and prepared for quantitative PCR or 5' RACE.          

 

Quantitative PCR 

Identical volumes of RNA (representing approximately the same number of cells and ranging 

from 1-2 µg of RNA) that were prepared from cellular fractions above were treated with 2 

units of DNase I (Worthington) in 9.5 µL of DNase I buffer (10 mM Tris-HCl, pH 7.0, 10 mM 

NaCl, 2 mM MgCl2, 0.5 mM CaCl2) for 15 min at room temperature to degrade any genomic 

DNA contamination. Afterwards, 0.5 µL of a 50 mM EDTA, 10 mM EGTA solution was added 

and DNase I heat-inactivated at 70°C for 10 min. Treated RNAs were reverse-transcribed 

using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) in a final 

volume of 20 µL. Quantitative PCR (qPCR) was performed using iTaq Supermix with ROX 

(Biorad) with ~10-20 ng of cDNA as template.  

 Data were normalized relative to measured GAPDH levels in each cellular 

compartment. Because no normalization control exists that is the same level across cellular 

compartments, and because spike-in controls can have variability in performance (data not 

shown), comparisons among treatments were only performed within each cellular 

compartment and not across cellular compartments (ie. chromatin to chromatin, not 

cytoplasm to chromatin).  Primers used in qPCR are listed in Table S1. 

 

Rapid Amplification of cDNA Ends (RACE)  



RACE was performed using the GeneRacer Kit (Invitrogen) following the manufacturer's 

recommended protocol. cDNA was prepared from ~1 µg RNA from each cellular fraction 

(DNase-treated and prepared as described above) by reverse-transcription (RT) reaction 

using random primers. The 5’ end of cDNA was amplified using Platinum Taq DNA 

polymerase (Invitrogen) and specific primer sets for Malat1 and RPL30 (Table S1). The 

thermal cycling condition was 94°C for 2 min, followed by 5 cycles of 94°C for 30 sec and 

72°C for 1 min, 5 cycles of 94°C for 30 sec and 70°C for 1 min, and 25 cycles of 94°C for 30 

sec, 65-66°C for 30 sec, and 68°C for 1 min, followed by final extension of 68°C for 10 min. 

PCR products were analyzed on 1.2-1.5% agarose gel (Fig. S6B-C). Major PCR products on 

gels were excised and cloned into pCR 4-TOPO vectors, transformed into TOP10 chemically 

competent cells, then sequenced to map the 5’ cleavage sites. Chromatin-associated 

cleavage products for RPL30 were below our detection limit (Fig. S6C), despite performing 

nested PCR with multiple primer sets (data not shown). This result may reflect the relatively 

low level of RPL30 mRNA actually associated with chromatin. In addition to relative starting 

levels of targeted RNA, detection of cleavage products will also depend upon other factors 

like the rate of cleavage product formation and degradation. 

 

In vitro Ago2 cleavage assay 

HeLa cells were either untreated or transfected with 25 nM siLuc or siLuc_mm (see Table S1) 

then harvested 36 h later and nuclear and cytoplasmic extracts prepared as described above. 

Ago2 protein was immunoprecipitated using 1.5 µg anti-Ago2 antibody (Abcam, ab57113), 30 

µL Protein G Plus/Protein A agarose (Calbiochem) and 200 µL extract with rocking at room 

temperature for 1 h. Resin was washed 3x with 0.5 mL IPWB500 (20 mM Tris-HCl, pH 7.5, 4 

mM MgCl2, 0.5 M NaCl, 0.05% NP-40) then 1x with 0.5 mL IPDB (20 mM Tris-HCl, pH 7.5, 3 



mM MgCl2, 0.15 M NaCl) at room temperature. Synthesized target RNA substrate was 5' 

radiolabeled with T4 polynucleotide kinase and [γ]32P-ATP, then gel-purified. Labeled target 

RNA substrate (50,000 cpms, ~0.1 pmols) was added to the washed Ago2-bound resin in 20 

µL 1X RNAi buffer (20 mM Tris-HCl, pH 7.5, 4 mM MgCl2, 0.5 mM DTT, 80 mM NaCl, 20 mM 

KCl, 0.5 mM EDTA) supplemented with 1 mg/mL yeast tRNA, 20 units SUPERase-In 

(Ambion), and 0.5 mM ATP.  

Reactions were incubated at 30°C for 1.5 hr with periodic mixing and RNA collected by 

addition of 0.5 µL of 0.5 M EDTA then phenol extracted. Extracted RNA was precipitated with 

9 volumes of 2% LiClO4 in acetone, washed with acetone, resuspended in 90% formamide, 

1x Tris-Borate EDTA (TBE) buffer, boiled for 3 min, then resolved on a 15% denaturing 

polyacrylamide (7 M urea, 1x TBE, 2% glycerol) sequencing gel. The gel was dried and 

exposed to a phosphorimager screen overnight to visualize radioactive bands. Target RNA 

substrate consists of a single siLuc siRNA target site flanked by firefly luciferase gene 

sequence and capped with two terminal DNA bases on each end. Target RNA substrate 

sequence (DNA bases capitalized, complementary siRNA target site in brackets): 

GAacaauugauuuuacagac[gcacauaucgaggugaaca]ucacguacgcggaauacuTC.  

Synthetic product RNA sequence: GAacaauugauuuuacagac[gcacauauc.     

 

Immuno-fluorescence and co-localization analysis 

Immuno-fluorescence was performed similarly to that previously described (Ohrt et al., 2012; 

Spector, 2011) with modifications. Briefly, cells were grown for 16-24 h to 50-70% confluency 

on 35 mm dishes (MatTek Corporation, P35GCOL-1.5-14-C) with a 14 mm glass bottom of 

1.5 mm thickness. Cells were washed with PBS then fixed in freshly made 2% formaldehyde 

in PBS or 4% paraformaldehyde in PBS for 15 min at 20°C, or in 70% ethanol for at least 30 



min at 4°C. Fixed cells were washed 3x in PBS for 10 min at 4°C. Cells were permeabilized in 

PBS containing 0.2% Triton X-100 and 1% normal goat serum (NGS) for 5-10 min on ice then 

washed 3x with ice-cold PBS + 1% NGS at 4°C for 10 min.  

The cells were incubated in primary antibody for 1 hr at room temperature or 

overnight at 4°C. Primary antibodies were diluted in PBS + 1% NGS and incubated for 1 h at 

room temperature or at 4°C overnight: anti-Ago2 at 1:100 (Abcam, ab57113), anti-Ago2 at 

1:50 or 1:100 (Sigma-Aldrich, clone 11A9, SAB4200085), anti-Ago2 at 1:50 or 1:100 (Wako 

Chemicals, 015-22031), anti-TNRC6A at 1:50 or 1:100 (Bethyl Laboratories, A302-329A), 

anti-Dicer at 1:100 (Abcam, ab14601), anti-TRBP at 1:100 (Abcam, ab72110). Cells were 

washed 3x in PBS + 1% NGS for 10 min at room temperature, then incubated in 4 µg/mL 

secondary antibody diluted in PBS + 1% NGS for 1 h at room temperature. Secondary 

antibodies were Alexa Fluor 488 Goat Anti-Mouse IgG (Invitrogen, A-11001), Alexa Fluor 594 

Goat Anti-Rabbit IgG (Invitrogen, A-11012), and Alexa 594 Goat Anti-Rat IgG (Invitrogen, A-

11007). Cells were washed 4x in PBS for 10 min at room temperature then Vectashield Hard 

Set Mounting Medium with DAPI (Vector Laboratories, H-1500) was added to the cells then 

covered with a coverslip and allowed to harden for 15 min at room temperature.  

Cells were imaged with a 60x objective lens and DAPI, FITC and TRITC filters on a 

wide-field epifluorescence Deltavision deconvolution microscope. Z-sections were taken at 

0.1, 0.15 or 0.2 µm for at least 6 µm thickness. Images were blind deconvoluted using 

AutoQuant X3 (Media Cybernetics) and stacked and analyzed in Imaris (Bitplane). 

Alternatively, some samples were imaged by Andor spin disc confocal microscopy. The Co-

localization channel of Ago2 (FITC, green) and TNRC6A (TRITC, red) was calculated using 

Imaris software based on the correlation of the strength of linear relation between the red 



channel and the green channel and the threshold levels for calculation of co-localization were 

selected above background signals.  

 

Fluorescence in situ hybridization (FISH) 

Cells were grown for 16-24hrs to 50-70% confluence on 35mm MatTek dishes as described 

for immuno-fluorescence above. Cells were transfected with 25 nM siLuc or siMalat1 as 

described above. At 48 h post transfection, cells were washed with PBS and fixed in ice-cold 

4% paraformaldehyde in PBS for 15 min at 20°C, followed by permeabilization in 70% 

ethanol for at least 30 min at 4°C.  

From this point forward, the protocol recommended by the manufacturer of the FISH 

probes for Malat-1 (Biosearch Technologies, New Stellaris RNA FISH Probe for Malat-1, 

SMF-2035-1) was followed with modifications. Briefly, cells were washed with 1 mL of wash 

buffer (10% formamide in 2x SSC) and incubated 5 min at room temperature, then incubated 

in hybridization buffer (10% formamide, 2x SSC, 100 mg/mL dextran sulfate, 1 mM vanadyl 

ribonucleoside complex) containing Malat-1 probe (125 nM) in a humidified chamber at 37°C 

for 4-16 h in the dark. Cells were washed 1x with wash buffer in the dark at 37°C for 30 min. 

Vectashield Hard Set Mounting Medium with DAPI (Vector Laboratories, H-1500) was then 

added, covered with a coverslip and allowed to harden for 15 min at room temperature. Cells 

were imaged and analyzed the same as described above for immuno-fluorescence but using 

DAPI and Cy-5 filters. Z-stacks were taken with 0.15 or 0.2 µm slices and 6 µm thickness. 

 

Small RNA-seq library preparation and sequencing 

For whole cell small RNA sequencing, T47D cells were harvested and then dissolved in 

TRIzol (Sigma). For sequencing of small RNA from cell nuclei, pure nuclei were isolated first 



as described above. Nuclei were then dissolved in TRIzol. Small RNA was isolated using 

miRNeasy Mini Kit (Qiagen) and then treated with DNase I (Worthington) for 20 min at 37°C 

to remove any contaminating genomic DNA. The small RNA-seq library was made using 

Illumina Small RNA Truseq kit following the manufacturer's recommended protocol. RNA-seq 

libraries were sequenced on a Illumina HiSeq 2000 as per manufacturer’s instructions for 

single-end 1x50. Approximately, 30 million raw reads (averaged over two replicates) were 

obtained per sample. Reads with low quality score were removed and reads that passed the 

filtration were trimmed by removing the adaptor sequence. Trimmed reads shorter than 15 nt 

were also excluded from analysis. Filtered and trimmed reads were aligned to the human 

genome (hg19) using Bowtie2 by allowing up to two mismatches to the reference sequence. 

Up to 10 different alignments per read were permitted. For reads that were aligned to multiple 

positions in the reference genome, the single aligned read with the fewest mismatches was 

selected using a Perl script. If multiple reads still remained, the original read would be 

disregarded. Approximately 70% of raw reads were successfully aligned. Finally, the aligned 

reads were again mapped to the UCSC miRNA database and miRBase (mature miRNAs) to 

search for possible miRNA hits. 

 

Sequencing of AGO2-associated small RNA in cell nuclei  

RNA Immunoprecipitation (RIP) assay using nuclear lysate (T47D cells) was performed as 

described (Chu et al., 2010; Matsui et al., 2013) using anti-human Ago2 antibody (Wako 

Chemical, 015-22031). A non-specific mouse IgG antibody was used as a control. The 

isolated RNA was loaded on a 10% polyacrylamide gel and the small RNA fraction (15nt-

40nt) was cut out and extracted. The small RNA was then subjected to polyadenylation by 

using a poly(A) tailing kit (Ambion). 3′-deoxy-ATP (cordycepin triphosphate, Jena 



Biosciences) was introduced 10 min after the initiation of the polyadenylation reaction for 3′-

end blocking and tail length limitation (performed by Helicos, Inc.). The Direct RNA 

Sequencing (DRS) was carried out on a single molecule Helicos sequencer. Raw sequencing 

data was filtered to remove low quality reads and subsequently aligned using the Helisphere 

package, a software designed to specifically analyze sequencing data generated from the 

Helicos sequencer. The aligned reads were again mapped to the UCSC miRNA database 

and miRBase (mature miRNAs) to search for possible miRNA hits. 

 

In vitro Dicer processing assay 

Dicer was immunoprecipitated using 3 µg of anti-Dicer (Abcam, ab14601) antibody (or 3 µg 

normal mouse IgG as control), 50 µL Protein G Plus/Protein A agarose (Calbiochem) and 200 

µL of HeLa nuclear or cytoplasmic extract (prepared as described above) with rotation at 

room temperature for 1 h. Resin was washed 3x with 0.5 mL IPWB300 (20 mM Tris-HCl, pH 

7.5, 4 mM MgCl2, 0.3 M NaCl, 0.05% NP-40) then 1x with 0.5 mL IPDB (20 mM Tris-HCl, pH 

7.5, 3 mM MgCl2, 0.15 M NaCl) at room temperature. Pre-miR-19a substrate was in vitro 

transcribed in the presence of [α]32P-ATP then gel-purified. Radiolabeled pre-miR-19a RNA 

(50,000 cpms) was added to the washed Dicer-bound resin in 20 µL 1X Dicer assay buffer 

(40 mM Tris-HCl, pH 7, 3 mM MgCl2, 50 mM NaCl) supplemented with 2 mM ATP and 200 

units SUPERase-In (Ambion).  

Reactions were incubated at 32°C for 1 hr with periodic mixing and RNA collected by 

addition of 0.5 µL of 0.5 M EDTA and 5 µg yeast tRNA then phenol extracted. Extracted RNA 

was precipitated with 9 volumes of 2% LiClO4 in acetone, washed with acetone, resuspended 

in 90% formamide, 1x Tris-Borate EDTA (TBE) buffer, boiled for 3 min, then resolved on a 

15% denaturing polyacrylamide (7 M urea, 1x TBE, 2% glycerol) sequencing gel. The gel was 



dried and exposed to a phosphorimager screen overnight to visualize radioactive bands. Pre-

miR-19a sequence from miRBase was used prepare in vitro transcription template. DNA 

seqeunces below were annealed and used for in vitro transcription (Epicentre Ampliscribe T7 

In Vitro Transcription Kit) following the manufacturers protocol. 

hsa-miR-19a pre-miRNA T7 sense (lowercase = T7 promoter):  

ctaatacgactcactataGCAGTCCTCTGTTAGTTTTGCATAGTTGCACTACAAGAAGAATGTAGT

TGTGCAAATCTATGCAAAACTGATGGTGGCCTGC  

hsa-miR-19a pre-miRNA T7 antisense (lowercase = T7 promoter):  

GCAGGCCACCATCAGTTTTGCATAGATTTGCACAACTACATTCTTCTTGTAGTGCAACTA

TGCAAAACTAACAGAGGACTGCtatagtgagtcgtattag 

 

In vitro Ago2 small RNA loading assay 

Duplex siRNA or single-strand guide RNA radiolabeled at the 5' end was incubated with cell 

extracts supplemented with 1 mM ATP for 1 h at room temperature with rotation. For 

reactions using mismatch-containing siLuc, the standard antisense siLuc strand was 

radiolabeled and annealed to sense strand with the indicated base position mismatches (see 

Table S1) then gel-purified before use. When indicated, phosphocreatine (10 mM) and 

creatine kinase (100 µg/mL) were added as an ATP regeneration system. Ago2 was 

immunoprecipitated using 2µg of anti-Ago2 antibody (Abcam, ab57113) and 40 µL of Protein 

G Plus/Protein A agarose (Calbiochem) with rotation for 1 h at room temperature. Resin was 

washed 3x with 0.8 mL IPWB500 (20 mM Tris-HCl, pH 7.5, 4 mM MgCl2, 0.5 M NaCl, 0.05% 

NP-40) and 1x with 0.5 mL IPDB (20 mM Tris-HCl, pH 7.5, 3 mM MgCl2, 0.15 M NaCl) at 

room temperature. Co-precipitated RNA was collected by addition of 0.5 µL of 0.5 M EDTA 

and 5 µg yeast tRNA then phenol-chloroform extraction. Extracted RNA was precipitated with 



9 volumes of 2% LiClO4 in acetone, washed with acetone, resuspended in 90% formamide, 

1x Tris-Borate EDTA (TBE) buffer, boiled for 3 min, then resolved on a 15% denaturing 

polyacrylamide (7M urea, 1x TBE, 2% glycerol) sequencing gel. The gel was dried and 

exposed to a phosphorimager screen overnight to visualize radioactive bands.   
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Figure S2, Related to Figure 2: Argonaute family proteins are detected in HeLa nuclear extracts by Western 
blot. Cell extracts were prepared as described and probed by Western blot with specific antibodies to detect each Ago 
family protein, Ago1, Ago2, Ago3 and Ago4. 



Figure S3, Related to Figure 3: Ago2 and TNRC6A immuno-staining co-localizes in HeLa cell nuclei. Cells were 
stained with anti-Ago2 from Abcam (A) or anti-Ago2 from Wako Chemicals (B) and anti-TNRC6A from Bethyl
Laboratories (see Methods). (A) 4 µm thick and (B) 5 µm thick Z-stacks were taken.  Co-localization channels were built 
in Imaris (Bitplane). Scale bars = 10 µm (A) and 5 µm (B). 



Figure S4, Related to Figure 4: 5’-RACE and Malat-1 FISH demonstrate siRNA-directed cleavage in nuclear 
fractions. HeLa cells were transfected with siRNA against Malat-1 lncRNA, RPL30 mRNA, with a negative control 
siRNA (siLuc) or left untreated. RNA from cytoplasmic, nucleoplasmic and chromatin fractions were isolated 72 h 
post-transfection and subjected to 5’RACE to detect predicted cleavage products for (A) Malat-1 or (B) RPL30 
(see Methods). Gels for separation of RACE products are shown with the cleavage product band highlighted. 
Cleavage product bands were excised and sequenced to unambiguously validate sequence-specific siRNA-
directed cleavage at the expected phosphodiester bond of the targeted RNA. 5’ ends of sequenced RACE 
products are shown below each gel for each cell fraction. RACE was performed at least twice and cloning and 
sequencing performed several times per band for each experiment. HeLa cells were treated with (C) a mock 
siRNA (siLuc) or (D) siRNA against Malat-1 (siMalat1) then processed for FISH analysis (see Methods) 48 h later. 
Z-stacks 6 µm thick were taken.



Figure S5, Related to Figure 6: Controls for Ago2 loading deficiency in the human cell nucleus. (A) Incubation of 
single-stranded siLuc guide RNA with T47D cytoplasmic and nuclear extracts followed by Ago2 immunoprecipitation, or 
with Ago2 after immunoprecipitation. Single-stranded guide RNA does not efficiently bind Ago2 in extracts presumably 
due to rapid degradation. If Ago2 is first immunoprecipitated to wash away contaminating nucleases, single-stranded 
guide RNA readily binds and co-immunoprecipitates. (B) Degradation kinetics of duplex siLuc in HeLa cytoplasmic or 
nuclear extracts. (+) SUPERase-In = addition of 50 unites of SUPERase-In RNase inhibitor. (C) Ago2 in vitro loading 
assay using siLuc siRNA dual-labeled on both guide and passenger strands. (D) Immunoprecipitation of Ago2 from 
HeLa cytoplasmic and nuclear extracts followed by coomassie staining shows equivalent amounts of Ago2 capture from 
both extracts. (E) Ago2 in vitro loading assay using radiolabeled siLuc and the addition of ATP regeneration system 
(see Extended Methods) in cytoplasmic or nuclear extracts.





Movie S1, Related to Figure 1: 5 µm section from bottom to top of HeLa cells stained with anti-Ago2 (green) 
from Wako Chemicals.  Nuclei are stained with DAPI (blue).
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